首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    LLDP协议原理

    LLDP(Link Layer Discovery Protocol,链路层发现协议)。LLDP定义在802.1ab中,它是一个二层协议,它提供了一种标准的链路层发现方式。LLDP协议使得接入网络的一台设备可以将其主要的能力,管理地址,设备标识,接口标识等信息发送给接入同一个局域网络的其它设备。当一个设备从网络中接收到其它设备的这些信息时,它就将这些信息以MIB的形式存储起来。这些MIB信息可用于发现设备的物理拓扑结构以及管理配置信息。需要注意的是LLDP仅仅被设计用于进行信息通告,它被用于通告一个设备的信息并可以获得其它设备的信息,进而得到相关的MIB信息。它不是一个配置、控制协议,无法通过该协议对远端设备进行配置,它只是提供了关于网络拓扑以及管理配置的信息,这些信息可以被用于管理、配置的目的,如何用取决于信息的使用者。

    02

    ICLR2020 | GraphAF:基于FLOW的分子图自回归生成模型

    今天给大家介绍的是北京大学和上海交通大学的Chence Shi等人在2020年的ICLR上发表的会议论文GraphAF: A flow-based autoregressive model for molecular graph generation。分子的图生成作为药物发现的基本问题,正在引起越来越多的关注。这个问题非常具有挑战性,因为它不仅需要产生化学上有效的分子结构,而且还需要同时优化它们的化学性质。受深度生成模型最新进展的启发,本文提出了一种基于Flow的图生成自回归模型,称为GraphAF。GraphAF结合了自回归和基于Flow的方法的优点,可以高效并行计算训练,允许利用化学领域知识进行有效性检查。实验结果表明,即使没有化学知识规则,GraphAF也能产生68%的化学有效分子。在通过强化学习对目标导向的性质优化模型进行微调后,GraphAF实现了最先进的性能。

    04

    IEEE|具有混合状态的强化分子生成

    今天给大家介绍的是悉尼大学的Fangzhou Shi等人在2019年IEEE上发表的会议论文“Reinforced Molecule Generation with Heterogeneous States”。近年来,基于强化学习的方法利用图来表示并生成分子。然而,分子图表示可能忽略了分子的内在上下文信息,并相应地限制了生成性能。在本文中,作者提出用SMILES上下文向量来增强原始图的状态。SMILES表示很容易被简单的语言模型处理,这样就可以提取分子的一般语义特征;图表示在处理每个原子的拓扑关系方面表现得更好。此外,作者还提出了一个结合监督学习和强化学习算法的框架,以更好地考虑分子的这两种状态表示,它可以融合来自两者的信息,并提取更全面的特征,从而使策略网络能够做出更复杂的决策。模型还引入了两种注意机制,即动作注意和图注意,以进一步提高性能。作者在数据集ZINC上进行了实验,实验结果表明,此框架在分子生成和化学性质优化的学习性能方面优于其他基线方法。

    01
    领券