关于用户画像的概念,数据相关从业人员应该都知道。用户画像的应用场景很广泛,比如精细化运营、数据分析与挖掘、精准营销、搜索和广告的个性化定向推送等。 用户画像的分析核心一个是对用户建模打标签,关于这,之前在内部交流群分享了一份个人学习的资料,大家都觉得真香,今天把全部内容共享出来供大家自行下载阅读。 主要目录: 1、用户画像应用场景 2、产品层面的宏观分析维度 3、用户画像标签类型 4、用户画像项目开发流程 5、数据仓库介绍 6、用户画像数据质量管理 7、常见需要开发的用户画像相关模型 8、用户行为标签表实际开发案例
开发画像后的标签数据,如果只是“躺在”数据仓库中,并不能发挥更大的业务价值。只有将画像数据产品化后才能更便于业务方使用。 本文主要介绍用户画像产品化后主要可能涵盖到的功能模块,以及这些功能模块的应用场景。 01 即时查询 即时查询功能主要面向数据分析师。 将用户画像相关的标签表、用户特征库相关的表开放出来供数据分析师查询。 Hive存储的相关标签表,包括userid和cookieid两个维度。 图13 对比分析两个人群特征 本文介绍了用户画像产品化主要涵盖的功能模块以及这些模块的应用场景。用户画像产品化是把数据应用到业务服务中的一个重要出口,业务人员熟知业务,但对数据不了解。 本文摘编于《用户画像:方法论与工程化解决方案》,经出版方授权发布。
个人网站、项目部署、开发环境、游戏服务器、图床、渲染训练等免费搭建教程,多款云服务器20元起。
关于用户画像的概念,数据相关从业人员应该都知道。用户画像的应用场景很广泛,比如精细化运营、数据分析与挖掘、精准营销、搜索和广告的个性化定向推送等。 用户画像的分析核心一个是对用户建模打标签,关于这,之前宝器在内部交流群分享了一份个人学习的资料,大家都觉得真香,今天把全部内容共享出来供大家自行下载阅读。 主要目录: 1、用户画像应用场景 2、产品层面的宏观分析维度 3、用户画像标签类型 4、用户画像项目开发流程 5、数据仓库介绍 6、用户画像数据质量管理 7、常见需要开发的用户画像相关模型 8、用户行为标签表实际开发案例
01 什么是健康码画像? 健康码画像让普通大众理解了数据,其实在实际的应用中还有很多针对特定场景的画像,如用户画像、产品画像、业务经营画像等,下面以用户画像为例讲解。 02 什么是用户画像? 、场景等描述,形成一个用户画像原型。 通过这个用户画像,从而对这个人有了一个整体的认识,一个完整的人物画像已经呈现在了你的脑海里。当标签被描述得越多,用户画像就越清晰。 用户画像的基本要素包括:基本属性、动态属性、消费属性、行为属性和心理属性等。 基本属性是勾勒用户画像的基础:性别、年龄、学历、角色、收入、地域、婚姻等。
","id":15,"tablename":"user_info","account":"abcd","age":24,"email":"981456@qq.com","status":0} 创建用户画像 reduce.addSink(new CarrierAnalySink()); env.execute("portrait carrier"); } } 创建用户画像会员分类标签 ); reduce.addSink(new MemberAnalySink()); env.execute("portrait member"); } } 用户画像行为特征 这里我们会分析用户的几个行为,并进行画像 浏览商品行为:频道id、商品id、商品类别id、浏览时间、停留时间、用户id、终端类别(1、PC端,2、微信小程序,3、app)、deviceId。 创建用户画像商品类别偏好标签 创建一个商品类型标签实体类 @Data public class ProductTypeLabel { private Long userid; private
用户画像是指用户的进行标签化、信息结构化。 构成用户画像的基本元素通常有:姓名、照片、个人信息、经济状况、工作信息、计算机互联网背景。 用来丰富用户画像的元素有:居住地、工作地点、公司、爱好、家庭生活、朋友圈、性格、个人语录等等。 创建用户画像的方法 ? 用户画像的作用 精准营销,分析产品潜在用户,针对特定群体利用短信邮件等方式进行营销; 用户统计,比如中国大学购买书籍人数 TOP10,全国分城市奶爸指数; 数据挖掘,构建智能推荐系统,利用关联规则计算
图1-6 用户画像建设项目流程 第一阶段:目标解读 在建立用户画像前,首先需要明确用户画像服务于企业的对象,再根据业务方需求,明确未来产品建设目标和用户画像分析之后的预期效果。 就后文将要介绍的案例而言,需要从用户属性画像、用户行为画像、用户偏好画像、用户群体偏好画像等角度去进行业务建模。 只有业务人员在日常工作中真正应用画像数据、画像产品,才能更好地推动画像标签的迭代优化,带来流量提升和营收增长,产出业绩价值。 图1-8 回收的调研问卷(截图自“问卷星”) 08 小结 本文主要介绍了用户画像的一些基础知识,包括画像的简介、标签类型、整个画像系统的数据架构,开发画像系统主要覆盖的8个模块,以及开发过程中的各阶段关键产出 初步介绍了画像系统的轮廓概貌,帮助读者对于如何设计画像系统、开发周期、画像的应用方式等有宏观的初步的了解。
(5)行业报告&用户研究:通过用户画像分析可以了解行业动态,比如人群消费习惯、消费偏好分析、不同地域品类消费差异分析 根据用户画像的作用可以看出,用户画像的使用场景较多,用户画像可以用来挖掘用户兴趣 三、 用户画像的分类 从画像方法来说,可以分为定性画像、定性+定量画像、定量画像 从应用角度来看,可以分为行为画像、健康画像、企业信用画像、个人信用画像、静态产品画像、 旋转设备画像、社会画像和经济画像等。 八、 用户画像基本步骤[F2] 根据具体业务规则确定用户画像方向后,开展用户画像分析,总体来说,一个用户画像流程包括以下三步。 十二、用户画像困难点、用户画像瓶颈 用户画像困难点主要表现为以下4个方面 资料搜集和数据挖掘 在画像之前需要知道产品的用户特征和用户使用产品的行为等因素,从而从总体上掌握对用户需求需求 创建用户画像不是抽离出典型进行单独标签化的过程
伴随着对人的了解逐步深入,一个概念悄然而生:用户画像(UserProfile),完美地抽象出一个用户的信息全貌,可以看作企业应用大数据的根基。 一、什么是用户画像? 这样一串描述即为用户画像的典型案例。如果用一句话来描述,即:用户信息标签化。 如果用一幅图来展现,即: ? 二、为什么需要用户画像 用户画像的核心工作是为用户打标签,打标签的重要目的之一是为了让人能够理解并且方便计算机处理,如,可以做分类统计:喜欢红酒的用户有多少?喜欢红酒的人群中,男、女比例是多少? 所以,用户画像,即:用户标签,向我们展示了一种朴素、简洁的方法用于描述用户信息。 3.1 数据源分析 构建用户画像是为了还原用户信息,因此数据来源于:所有用户相关的数据。 百分点现已全面应用用户画像技术于推荐引擎中,在对某电商客户,针对活动页新访客的应用中,依靠用户画像产生的个性化效果,对比热销榜,推荐效果有显著提升:推荐栏点击率提升27%,订单转化率提升34%。
在《4个问题带你了解用户画像》中,我们了解了用户画像的定义、作用及使用注意事项等。 就有用户留言问了:在实际工作中,构建用户画像的方法有哪些?如何构建用户画像呢? 下面我将结合通过案例,带你了解构建用户画像的4个步骤: 用户画像是为业务服务的,因此我们构建画像之前一定要清晰项目背景和业务需求。 用户归类 回顾用户画像的定义:用户画像是目标用户的代表性画像,其中包含了用户属性、场景、痛点和需求等。 实际构建过程中,我们往往无法用一个画像代表所有目标用户。 以上信息归纳总结,就是最终的用户画像: 成就型人格者: 外向型探索家: 剧中人: 客观型行业人员: 画像完成后,可能有朋友要问,做了那么多前期工作,最后就剩下简洁的画像了? 因此提炼画像不是工作的结束,促进画像运用和验证效果也是重要步骤。
智能数据分析( IDA)基于安全、低成本、高可靠、可弹性的云端大数据架构,帮助企业客户实现从数据采集、建模、挖掘、效果分析、用户标签画像到自动化营销等全场景的数据服务,快速实现数据驱动业务增长的目标。
扫码关注腾讯云开发者
领取腾讯云代金券