原文:Dlib 库 - 人脸检测及人脸关键点检测 - AIUAI Dlib 官网 - Dlib C++ Library Dlib - Github Dlib 是一个十分优秀好用的机器学习库...这里主要记录 Dlib 中关于人脸检测和人脸关键点等技术的 python 应用. pip 安装: sudo apt-get install cmake sudo pip install dlib 或 Github...人脸检测 Face Detector 人脸检测,是检测出图片中包含的正面人脸. 1.1....基于 HOG 特征和线性分类器的人脸检测 下面是采用经典的 HOG(Histogram of Oriented Gradients) 特征 结合线性分类器、图像金字塔(image pyramid) 及滑窗检测机制...人脸关键点检测 Face Landmark Detection 人脸关键点检测,首先需要检测出图片中的人脸,并估计人脸的关键点姿态(pose).
上几篇给大家讲了OpenCV的图片人脸检测,而本文给大家带来的是比OpenCV更加精准的图片人脸检测Dlib库。...dlib与OpenCV对比 识别精准度:Dlib >= OpenCV Dlib更多的人脸识别模型,可以检测脸部68甚至更多的特征点 效果展示 ? 人脸的68个特征点 ?...安装dlib 下载地址:https://pypi.org/simple/dlib/ 选择适合你的版本,本人配置: Window 10 + Python 3.6.4 我现在的版本是:dlib-19.8.1...下载训练模型 训练模型用于是人脸识别的关键,用于查找图片的关键点。...detector = dlib.get_frontal_face_detector() # 获取人脸检测器 predictor = dlib.shape_predictor( "C:\\Python36
往期目录 视频人脸检测——Dlib版(六) OpenCV添加中文(五) 图片人脸检测——Dlib版(四) 视频人脸检测——OpenCV版(三) 图片人脸检测——OpenCV版(二) OpenCV...环境搭建(一) 更多更新,欢迎访问我的github:https://github.com/vipstone/faceai 前言 Dlib的人脸识别要比OpenCV精准很多,一个是模型方面的差距,在一方面和...视频人脸检测是图片识别的高级版本,图片检测详情点击查看我的上一篇《图片人脸检测——Dlib版(四)》 除了人脸识别用的是Dlib外,还是用OpenCV读取摄像头和处理图片(转为灰色),所以给出相关的文档...技术实现 有了OpenCV的视频人脸检测,Dlib也大致相同除了视频识别器模型的声明和使用不同,具体的细节请参考,视频人脸检测——OpenCV版(三) 那篇已经讲的很细致了,在这就不具体叙述了。...的视频识别对比,有两个地方是不同的: 1.Dlib模型识别的准确率和效果要好于OpenCV; 2.Dlib识别的性能要比OpenCV差,使用视频测试的时候Dlib有明显的卡顿,但是OpenCV就好很多,
上几篇给大家讲了OpenCV的图片人脸检测,而本文给大家带来的是比OpenCV更加精准的图片人脸检测Dlib库。...点击查看往期: 《图片人脸检测——OpenCV版(二)》 《视频人脸检测——OpenCV版(三)》 dlib与OpenCV对比 识别精准度:Dlib >= OpenCV Dlib更多的人脸识别模型,可以检测脸部...人脸的68个特征点 ?...下载训练模型 训练模型用于是人脸识别的关键,用于查找图片的关键点。...detector = dlib.get_frontal_face_detector() # 获取人脸检测器 predictor = dlib.shape_predictor( "C:\\Python36
很多人的第一个OpenCV学习目标就是跑通Haar级联人脸检测,Dlib库在业内开始流行很大程度上是因为其HOG-SVM人脸检测比OpenCV Haar的好,而近年来OpenCV和Dlib均已包含基于深度学习的人脸检测算法实现...缺点 1)会出现大量的把非人脸预测为人脸的情况; 2)不适用于非正面人脸图像; 3)不抗遮挡。 2....可以看到Dlib的两种方法效果都不怎么好,作者发现原来Dlib训练使用的数据集的人脸包围框较小,导致按照FDDB的评价标准不公平。 ? ? ? 另外,Dlib无法检测小脸也拉低了分数。 6....8 总结推荐 如何在应用中选择人脸检测算法呢?作者认为应该首先尝试OpenCV DNN方法与Dlib HOG方法,然后再做决定。 一般情况 在大多数应用程序中,我们无法知道图像中人脸尺寸的大小。...中到大尺寸的图像 Dlib HOG是CPU上最快的方法。但它不能检测到小脸(人脸(例如自拍照),那么基于HOG的人脸检测器是更好的选择。
dlib 安装dlib之前需要安装好cmake,之后再通过pip install dlib安装,如果报错的话,再自行百度吧,我是折腾了一下午才弄好。...下载dlib提供的检测模型文件 下载地址:http://dlib.net/files/ 文件名shape_predictor_68_face_landmarks.dat 人脸检测 单一图片 代码部分实现起来非常简单...,不过十几行的事,不过需要注意的是,通过cv2.imread读取的图片是BRG通道的,需要转成RGB通道,不然通过pyplot显示图片会变色。...68点人脸检测 摄像头读取 我们可以通过cv2.VideoCapture(0)调起摄像头,camera.read会返回两个参数,第一个代表是否获取到图像帧,第二个代表图像帧内容,剩下的部分就跟上面一样了...,传给dlib进行人脸检测就好了。
前言 Dlib的人脸识别要比OpenCV精准很多,一个是模型方面的差距,在一方面和OpenCV的定位有关系,OpenCV是一个综合性的视觉处理库,既然这么精准,那就一起赶快来看吧。...视频人脸检测是图片识别的高级版本,图片检测详情点击查看我的上一篇《图片人脸检测——Dlib版(四)》 除了人脸识别用的是Dlib外,还是用OpenCV读取摄像头和处理图片(转为灰色),所以给出相关的文档...技术实现 有了OpenCV的视频人脸检测,Dlib也大致相同除了视频识别器模型的声明和使用不同,具体的细节请参考,视频人脸检测——OpenCV版(三) 那篇已经讲的很细致了,在这就不具体叙述了。...完整的代码如下: # coding=utf-8 import cv2 import dlib detector = dlib.get_frontal_face_detector() #使用默认的人类识别器模型...的视频识别对比,有两个地方是不同的: 1.Dlib模型识别的准确率和效果要好于OpenCV; 2.Dlib识别的性能要比OpenCV差,使用视频测试的时候Dlib有明显的卡顿,但是OpenCV就好很多,
人脸检测 随着人脸识别,人脸支付,换脸等业务等爆发,多的人都将目光放在人脸方面的研究上。...可以说,人脸检测是目前所有目标检测子方向中被研究的最充分的问题之一,它在安防监控,人机交互,金融支付,社交和娱乐等方面有很强的应用价值,也是整个人脸识别算法的第一步。...问题描述 人脸检测的目标就是从图像中找到所有的人脸对应的位置,算法结果输出的是人脸在图像中所处的坐标。有些算法还会有其它的一些信息,比如性别,年龄,面部情绪等。...关于人脸检测这块的函数是get_frontal_face_detector写一个测试脚本: import cv2 import sys import dlib detector = dlib.get_frontal_face_detector...参考 人脸检测算法综述 人脸检测背景介绍和发展现状 dlib github
人脸检测 随着人脸识别,人脸支付,换脸等业务等爆发,多的人都将目光放在人脸方面的研究上。...可以说,人脸检测是目前所有目标检测子方向中被研究的最充分的问题之一,它在安防监控,人机交互,金融支付,社交和娱乐等方面有很强的应用价值,也是整个人脸识别算法的第一步。...问题描述 人脸检测的目标就是从图像中找到所有的人脸对应的位置,算法结果输出的是人脸在图像中所处的坐标。有些算法还会有其它的一些信息,比如性别,年龄,面部情绪等。...详细的发展过程网上有很多的参考资料,这里不作过多的介绍。 ? Dlib DLIB是包含机器学习算法和工具,一个现代化的C ++工具包。...使用起来也是比较简单的,首先进行安装: pip install dlib pip install opencv-python 关于人脸检测这块的函数是get_frontal_face_detector
() #dlib的68点模型,使用作者训练好的特征预测器 predictor=dlib.shape_predictor("shape_predictor_68_face_landmarks.dat")...#图片所在路径 img=io.imread("C:/Users/xpp/Desktop/Lena.png") #生成dlib的图像窗口 win=dlib.image_window() win.clear_overlay...() win.set_image(img) #特征提取器的实例化 dets=detector(img, 1) print("人脸数:",len(dets)) for k, d in enumerate(...,然后销毁窗口 cv2.imshow('result',img) cv2.waitKey(0) 人脸数:1 第 1 个人脸d的坐标:left: 201 right: 356 top: 184...bottom: 339 人脸面积为:24025 算法:基于Dlib的人脸检测与识别是通过多级级联的回归树进行关键点的回归。
Dlib包含用于处理网络,线程,图形用户界面,数据结构,线性代数,机器学习,图像处理,数据挖掘,XML 和文本解析,数值优化,贝叶斯网络以及许多其他任务的软件组件。...使用dlib可以大大简化开发,比如人脸识别,特征点检测之类的工作都可以很轻松实现。...# 使用 Dlib 的正面人脸检测器 frontal_face_detector detector = dlib.get_frontal_face_detector() # 使用训练好的模型shape_predictor..._68_face_landmarks.dat,在检测出人脸的同时,检测出人脸上的68个关键点 predictor=dlib.shape_predictor(r'C:\Python\Pycharm\docxprocess...,在检测出人脸的同时,检测出人脸上的68个关键点 predictor=dlib.shape_predictor(r'C:\Python\Pycharm\docxprocess\face_detector
import dlib #导入该库用于人脸识别 from skimage import io #导入该库主要用于图像载入 import cv2 detector=dlib.get_frontal_face_detector...()#加载Dlib检测器 img=io.imread("C:/Users/xpp/Desktop/Lena.png")#载入原图 dets=detector(img,1)#人脸检测 print("检测到的人脸数目...: {}".format(len(dets))) for d in dets: #使用OpenCV在原图上标出人脸位置 left_top=(dlib.rectangle.left(d),....imshow("img",cv2.cvtColor(img,cv2.COLOR_RGB2BGR))#转成BGR格式显示 cv2.waitKey(0) cv2.destroyAllWindows() 检测到的人脸数目...: 1 算法:基于Dlib进行人脸检测与标记是指对于任意输入的目标图像通过算法策略对其进行搜索来检测其中是否包含有人脸特征的图像区域。
前面一直做人脸检测相关内容,然后对比了下dib以及MTCNN的人脸检测效果主要是速度,以及FDDB准确率。最后给出生成FDDB测试文件的C++代码。...---- FDDB 测试结果 注本文的MTCNN效果检测准确率不是最优的,最优的在FDDB上可达95%,测试效果如下: ?...---- 速度 在CPU和GPU模式下,对于三种不同尺寸的图片,运行一千次测试平均的时效: CPU模式 MTCNN(既检测人脸又做landmark): ? dlib (仅仅检测人脸): ?...GPU模式 MTCNN(既检测人脸又做landmark): ? dlib (仅仅检测人脸): ?...可以看到: 在检测精度上MTCNN显然好于dlib 无论是CPU还是GPU模型下MTCNN的检测数度都好于dlib,而且dlib还做了人脸的landmark ---- dlib c++生成FDDB结果代码如下
然后就可以和上次推文一样获得一个简单的基于LBPH的人脸识别demo 了。 Dlib人脸检测 原理 Dlib是一款优秀的跨平台开源的C++工具库,该库使用C++编写,具有优异的性能。...Dlib的核心原理是使用了图像Hog特征来表示人脸,和其他特征提取算子相比,它对图像的几何和光学的形变都能保持很好的不变形。...Dlib 实现的人脸检测方法便是基于图像的Hog特征,综合支持向量机算法实现的人脸检测功能,该算法的大致思路如下: 对正样本(即包含人脸的图像)数据集提取Hog特征,得到Hog特征描述子。...Dlib人脸检测实战 talk is cheep, show me the coder。这一节就用Python调用Dlib完成人脸检测来看看效果。...在调用之前首先要安装Dlib人脸检测库,我使用的是Windows 10,Core i5的处理器。
dlib是人脸识别与人脸特征关键点获取的常用库,最近实现了将该库集成到展示框架的实验。 其中现有的dlib常见的可获取68个关键点,当然还有5个关键点和81个关键点(包括额头)。...因此编写了一个通用的小函数,如下: 该函数通过设置num_landmarks可以获取不同的关键点个数,如68,5和81,并返回facebbox(人脸框),通过该框的个数可以获取人脸的个数,并将人脸的关键点以...() predictor = dlib.shape_predictor('%s/cv/face/dlib/shape_predictor_%d_face_landmarks.dat' % (model_dir...(2) 5个关键点的检测结果 ? (3) 81个关键点的检测结果。 ? 不过从图上可以看出,dlib用于人脸检测,并不能检测出太多的人脸,特别是远处的小人脸,均无法检测。...附:上图只是百度上搜索获得检测的图片,只用于实验。
# 第二个参数中的 1表示我们应该对图像进行 1 次上采样。这个 # # 将使一切变得更大,并允许我们检测更多的人脸。...# 第二个参数中的 1表示我们应该对图像进行 1 次上采样。这个 # # 将使一切变得更大,并允许我们检测更多的人脸。...进行实时笑脸检测,就是要将cv2图像转换为dlib detector能够检测的图像数组: #检测器 detector = dlib.get_frontal_face_detector() ......这些是 # 面部的点,例如嘴角、眉毛、眼睛等。 # # 我们使用的人脸检测器是使用经典的定向直方图 # 梯度 (HOG) 特征结合线性分类器、图像金字塔、 # 和滑动窗口检测方案制成的。...# 第二个参数中的 1表示我们应该对图像进行 1 次上采样。这个 # # 将使一切变得更大,并允许我们检测更多的人脸。
YUV vs YCbCr YUV是基于RGB色彩模型的一种色彩空间,设计初衷是因为人对色彩的感知没有对亮度感知灵敏,所以在工业上为了减少图片的体积节省信息输送成本,有必要把亮度这一分量分离出来,再分离出两个颜色色差分量...另外YUV的一个好处是彩色电视信号对黑白电视的兼容,因为当两个色差分量值为0的时候(代表没有色差)输出的图像是黑白的。...大家可以针对同一张图片调整手机屏幕亮度,你会发现亮度对你色彩的感知影响是相当大的,这是人眼的工作原理。所以我们可以减小两个色差分量的取样进而减少整个图片的体积。...YUV的主要目的是在保证图像显示质量的前提下尽量缩小图像的体积,而且通过把亮度分量从RGB颜色分量中分离出来也能够使黑白显示设备能够兼容彩色信号。...Face detection in color images 文章里系统的讲解了人脸检测的相关算法。
下载HAAR与LBP数据 2. opencv相关知识 二、python+opencv实现人脸检测 1. 图像单人脸检测 2. 图像多人脸检测 3. 视频中人脸检测 4....下载HAAR与LBP数据 人脸检测的常见步骤如下,如果想要将人脸准确地检测出来,需要通过建立人脸模型,获取准确区分人脸的分类器,这里我们使用网上公开的扩展包或已经训练好的分类器。...detectMultiScale函数:检测人脸算法,其参数如下: image:要检测的输入图像 scaleFactor:表示每次图像尺寸减小的比例 minNeighbors:表示每一个目标至少要被检测到多少次才算是真的人脸...,因为周围的像素和不同的窗口大小都可能检测成人脸 minSize:表示目标的最小尺寸 maxSize:表示目标的最小尺寸 Haar-like矩形特征:是用于物体检测的数字图像特征。...,正脸和静止状态检测人脸的效果好。
数字图像 对于一幅的数字图像,我们看到的是 肉眼可见的一幅真正的图片,但是计算机看来,这副图像只是一堆亮度各异的点。...一副尺寸为 M × N 的图像可以用一个 M × N 的矩阵来表示,矩阵元素的值表示这个位置上的像素的亮度,一般来说像素值越大表示该点越亮。...首先安装需要要用到的 OpenCV 和 dlib 库,使用pip分别安装之 pip install python-opencv pip install dlib 然后手工在网上下载数据模型文件 shape_predictor...[0 0 0 ... 0 0 0] [0 0 0 ... 0 0 0] [0 0 0 ... 0 0 0]] 人脸检测 下面进行人脸检测,使用dlib处理。...# 人脸检测 dets = self.detector(img, 1) x, y, w, h = dets[0].left(), dets[0].top(), dets[
领取专属 10元无门槛券
手把手带您无忧上云