首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
您找到你想要的搜索结果了吗?
是的
没有找到

Unsupervised Image-to-Image Translation Networks

大多数现有的图像到图像翻译框架——将一个域中的图像映射到另一个域的对应图像——都是基于监督学习的,即学习翻译函数需要两个域中对应的图像对。这在很大程度上限制了它们的应用,因为在两个不同的领域中捕获相应的图像通常是一项艰巨的任务。为了解决这个问题,我们提出了基于变分自动编码器和生成对抗性网络的无监督图像到图像翻译(UNIT)框架。所提出的框架可以在没有任何对应图像的情况下在两个域中学习翻译函数。我们通过结合权重共享约束和对抗性训练目标来实现这种学习能力。通过各种无监督图像翻译任务的可视化结果,我们验证了所提出的框架的有效性。消融研究进一步揭示了关键的设计选择。此外,我们将UNIT框架应用于无监督领域自适应任务,并取得了比基准数据集中的竞争算法更好的结果。

06

Low-Shot Learning from Imaginary Data

人类可以快速学习新的视觉概念,也许是因为他们可以很容易地从不同的角度想象出新的物体的样子。结合这种对新概念产生幻觉的能力,可能有助于机器视觉系统进行更好的低视角学习,也就是说,从少数例子中学习概念。我们提出了一种新的低镜头学习方法,使用这个想法。我们的方法建立在元学习(“学习学习”)的最新进展之上,通过将元学习者与产生额外训练例子的“幻觉者”结合起来,并共同优化两种模式。我们的幻觉器可以整合到各种元学习者中,并提供显著的收益:当只有一个训练示例可用时,分类精度提高了6点,在具有挑战性的ImageNet low-shot 分类基准上产生了最先进的性能。

01

Hallucination Improves Few-Shot Object Detection

学习从少量的注释实例中检测新目标具有重要的现实意义。当例子极其有限(少于三个)时,就会出现一种特别具有挑战性而又普遍的制度。改进少样本检测的一个关键因素是解决缺乏变化的训练数据。我们提出通过从基类转移共享的类内变异来为新类建立一个更好的变异模型。为此,我们引入一个幻觉网络,该网络可以学习在感兴趣区域(RoI)特征空间中生成额外的、有用的训练示例,并将其纳入现在的目标检测模型。通过不同的区域建议生成过程,我们的方法在两个目前最先进的少样本检测器上产生了显著的性能改善(TFA和CoRPN)。特别是,我们在极具挑战性的COCO基准上达到了最佳的性能。

05

R-FCN: Object Detection via Region-based Fully Convolutional Networks

我们提出了基于区域的全卷积网络,用于精确和有效的目标检测。与之前的基于区域的检测器(如Fast/Faster R-CNN)相比,我们的基于区域的检测器是全卷积的,几乎所有计算都在整个图像上共享。为了实现这一目标,我们提出了位置敏感的分数映射来解决图像分类中的平移不变性与目标检测中的平移方差之间的矛盾。因此,我们的方法可以很自然地采用完全卷积的图像分类器骨干网络,如最新的残差网络(ResNets),用于目标检测。我们使用101层ResNet在PASCAL VOC数据集上显示了很有竞争的结果(例如,在2007年的集上显示了83.6%的mAP)。同时,我们的结果在测试时的速度为每张图像170ms,比Faster R-CNN对应图像快2.5-20倍。

02

[Intensive Reading]目标检测(object detection)系列(三) Fast R-CNN:end-to-end的愉快训练

目标检测系列: 目标检测(object detection)系列(一) R-CNN:CNN目标检测的开山之作 目标检测(object detection)系列(二) SPP-Net:让卷积计算可以共享 目标检测(object detection)系列(三) Fast R-CNN:end-to-end的愉快训练 目标检测(object detection)系列(四) Faster R-CNN:有RPN的Fast R-CNN 目标检测(object detection)系列(五) YOLO:目标检测的另一种打开方式 目标检测(object detection)系列(六) SSD:兼顾效率和准确性 目标检测(object detection)系列(七) R-FCN:位置敏感的Faster R-CNN 目标检测(object detection)系列(八) YOLOv2:更好,更快,更强 目标检测(object detection)系列(九) YOLOv3:取百家所长成一家之言 目标检测(object detection)系列(十) FPN:用特征金字塔引入多尺度 目标检测(object detection)系列(十一) RetinaNet:one-stage检测器巅峰之作 目标检测(object detection)系列(十二) CornerNet:anchor free的开端 目标检测(object detection)系列(十三) CenterNet:no Anchor,no NMS 目标检测(object detection)系列(十四)FCOS:用图像分割处理目标检测

02

农林业遥感图像分类研究[通俗易懂]

遥感图像处理是数字图像处理技术中的一个重要组成部分,长期以来被广泛应用于农林业的遥感测绘,防灾减灾等领域。本文旨在通过深度学习技术从遥感影像中分类出农田和林业地块。手工从遥感图像中分类出农田和林业区域分类虽然准确但是效率低下,并且很多采用传统图像分割技术的方法泛化性能差,不适合场景复杂的遥感图像。经实践证明,使用深度学习技术在各种计算机视觉任务中都取得了良好的效果,因此本文首先使用先进的深度学习框架进行分类实验,例如使用PSPNet,UNet等作为分割网络对遥感图像数据集进行分类与分割训练。这些框架在ImageNet,COCO,VOC等数据集上表现很好,但是由于遥感图像数据集相对于ImageNet,COCO等数据集,不仅检测对象相对较小而且可供学习的数据集样本较少,需要针对这一特点进行优化。本文经过多次实验将高分辨率的图像切割成合适大小分辨率的图像以减小神经网络的输入,同时进行图片的预处理和数据增强来丰富学习样本。同时在真实情况下,农林区域易受到拍摄视角,光照等造成分割对象重叠,因此本文提出一种处理分割对象重叠的处理策略,来优化边界预测不准确的情况,使用该方法后准确率有明显提升。经实验证明,本文所提出的基于深度学习的农林业遥感影像分割在开源遥感图像数据集上的取得了94.08%的准确率,具有较高的研究价值 农林业遥感图像数据(图1)对于许多与农林业相关的应用至关重要。例如作物类型和产量监测,防灾减灾以及对粮食安全工作的研究和决策支持。最初,这些数据主要由政府机构使用。如今,蓬勃发展的农林业技术也需要在农场管理,产量预测和林业规划等各种应用领域进行革新。以往农林业地块的高质量遥感图像数据主要是手动在高分辨率图像中分割出来的,即通过土地功能不同引起的颜色,亮度或纹理的差异与周围区域 亮度或纹理的差异与周围区域区分开来。尽管农林业遥感图像的手动分类可以非常准确,但是非常耗时耗力。 图1.1:农田的遥感图像分割 定期更新农林业遥感图像数据的需求日益增加扩大了自动化分割农林业遥感图像的需求。 与ImageNet、VOC2007、COCO等目标检测/分类数据集中的大多数图像相比,农林业遥感图像中的对象相对简单。例如,人体的图像数据看起来要复杂得多,因为它包含各种不同纹理和形状的子对象(面部,手部,衣服等)。因此,优化传统的图像分割以及深度学习技术来设计用于农林业遥感图像分割的算法是非常重要的。该模型需要正确地排除不需要进行分割的对象(房屋,工厂,停车场等),区分具有几乎相似的光谱特性的相邻区域和可见度差的边界区域,并且正确地分割出所需的对象。 1.2 选题来源与经费支持 本研究课题来源于计算机与信息工程学院 随着传感器技术,航空航天技术,图像处理技术快速的发展,利用卫星遥感图像进行深度学习处理广泛应用于生产实际中。由于农林业遥感图像场景复杂,使用传统图像处理分割算法效果差且泛化性能弱,本文使用深度学习方法,在现有的的深度学习模型上训练,优化,最终提出一种一种优化后的深度学习模型,经测试,该模型在收集的农林业遥感图像数据集上可以准确的分割出所需的对象,本文提出的模型主要解决如下几个难点:

02

目标检测算法Faster RCNN的损失函数以及如何训练?

从上一期Faster RCNN的算法原理上,我们知道Faster RCNN算法有两部分,一个是用来提取候选框的RPN网络,一个是最后检测目标的分类回归网络。通过学习,我们知道RPN网络在提取候选框的时候有两个任务,一个是判断该anchor产生的候选框是否是目标的二分类任务,另一个是对该候选框进行边框回归的回归任务。 而Faster RCNN最后的目标检测网络同样也有两个任务,跟RPN网络类似,一个是判断RPN网络产生的候选框框住的物体是具体哪一类物体的分类任务,另一个是对该候选框进行回归的回归任务。 既然两个网络都是多任务网络,那么,我们先看看RPN网络的损失函数是怎么样的?先上RPN网络的总体损失函数,接下来分析,如下(公式可左右滑动):

01

Integrated Recognition, Localization and Detection using Convolutional Networks

我们提出了一个使用卷积网络进行分类、定位和检测的集成框架。我们认为在一个卷积网络中可以有效地实现多尺度和滑动窗口方法。我们还介绍了一种新的深度学习方法,通过学习预测目标的边界来定位。然后,为了增加检测的置信度,对边界框进行累积而不是抑制。我们证明了使用一个共享网络可以同时学习不同的任务。该集成框架是ImageNet Large scale evisual Recognition Challenge 2013 (ILSVRC2013)定位任务的获胜者,在检测和分类任务上获得了非常有竞争力的结果。在比赛后的工作中,我们为检测任务建立了一个新的技术状态。最后,我们从我们最好的模型中发布了一个名为OverFeat的特性提取器。

03
领券