文章目录 一、NetworkX 概述 二、NetworkX的安装 三、NetworkX基础知识 1. 创建图 2. 网络图的加点和加边 3. 运用布局 四、利用NetworkX实现关联类分析 1....networkx支持创建简单无向图、有向图和多重图;内置许多标准的图论算法,节点可为任意数据;支持任意的边值维度,功能丰富。主要用于创造、操作复杂网络,以及学习复杂网络的结构、动力学及其功能。...创建图 可以利用 networkx 创建四种图: Graph 、DiGraph、MultiGraph、MultiDiGraph,分别为无多重边无向图、无多重边有向图、有多重边无向图、有多重边有向图。...f'输出节点的数量:{DG.number_of_nodes()}') # 添加边 传入列表 列表里每个元素是一个元组 元组里表示一个点指向另一个点的边 DG.add_edges_from([('A...'A'), ('E', 'D')] 输出边的数量:7 四、利用NetworkX实现关联类分析 利用 soccer.csv 中的数据,使用 Python 的 NetworkX 包按要求进行绘图。
作为一个热爱编程和数据的程序员,数据分析这块内容也经常围绕在我的工作周围。今天就为大家分享3款,Python技术下数据分析经常会使用到的三个库。...以前使用pandas的时候,只关注了csv、xls等格式,现在再回头看其实Pandas一直支持parquet格式。读取parquet文件同样使用pandas即可。...二、NetworkX:用Python探索图的奥秘 NetworkX,一个用于创建和操作图结构的强大工具。你可能会问,图结构到底有什么用?简单来说,图结构能帮助我们理解数据之间的关系。...import pandas as pd import networkx as nx import matplotlib.pyplot as plt # 读取Parquet文件 df = pd.read_parquet...('social_network.parquet') # 从Parquet文件中读取数据 # df = pd.read_parquet('social_network.parquet') # 创建空图
NetworkX 概述 NetworkX 是一个用Python语言开发的图论与复杂网络建模工具,内置了常用的图与复杂网络分析算法,可以方便的进行复杂网络数据分析、仿真建模等工作。...networkx支持创建简单无向图、有向图和多重图;内置许多标准的图论算法,节点可为任意数据;支持任意的边值维度,功能丰富。主要用于创造、操作复杂网络,以及学习复杂网络的结构、动力学及其功能。...NetworkX基础知识 创建图 可以利用networkx创建四种图: Graph 、DiGraph、MultiGraph、MultiDiGraph,分别为无多重边无向图、无多重边有向图、有多重边无向图...f'输出节点的数量:{DG.number_of_nodes()}') # 添加边 传入列表 列表里每个元素是一个元组 元组里表示一个点指向另一个点的边 DG.add_edges_from([('A...利用NetworkX实现关联类分析 利用 soccer.csv 中的数据,使用 Python 的 NetworkX 包按要求进行绘图。
一、前言 近日,有群友提出这样的问题: 群友提示可以使用ChatGPT,并给出代码: 二、实现过程 这里【瑜亮老师】给出了另外一个答案,与此同时,根据需求,构造数据,使用pandas也可以完成需求,...['夏侯', '荀彧'], ['孙权', '鲁肃'] ] df = pd.DataFrame(data, columns=['发起', '接收']) # 创建一个空字典用于存储人名与组别的映射关系...,在python中这是典型的查找连通图的问题,直接的思路是使用现成的networkx包直接调用求解连通图的算法即可,代码如下: import networkx as nx g = nx.Graph()...: 使用networkx我们还可以将图绘制出来: from matplotlib import pyplot as plt import networkx as nx plt.rcParams['font.sans-serif...往期精彩文章推荐: 盘点一个Python自动化办公的问题——批量实现文件重命名(方法一) 使用Pandas返回每个个体/记录中属性为1的列标签集合 Pandas实战——灵活使用pandas基础知识轻松处理不规则数据
对于networkx创建的无向图,允许一条边的两个顶点是相同的,即允许出现自循环,但是不允许两个顶点之间存在多条边,即出现平行边。...网络作为图的一个重要领域,包含的概念与定义更多,如有向图网络(Directed Graphs and Networks)、无向图网络(Undirected ~)等概念 模块加载 pip install...一是因为这只是一个空对象,并没有具体实际的数据(有点类似C#中类的概念);二是因为Networkx库设计的初衷也并非为了绘制网络图,创建了对象后不会自动绘制其图像,通常需要借助matplotlib库加以实现...G = nx.cubical_graph() # 生成一个正则图(3-regular Platonic Cubical graph) plt.subplot(121) # 绘制子图,创建一个1行2列的图形...,并选取第1行第1列的子图作为绘图背景 nx.draw(G) plt.subplot(122) 创建一个1行2列的图形,选取第1行第2列的子图作为绘图背景 nx.draw(G,pos=nx.circular_layout
对于networkx创建的无向图,允许一条边的两个顶点是相同的,即允许出现自循环,但是不允许两个顶点之间存在多条边,即出现平行边。...一是因为这只是一个空对象,并没有具体实际的数据(有点类似C#中类的概念);二是因为Networkx库设计的初衷也并非为了绘制网络图,创建了对象后不会自动绘制其图像,通常需要借助matplotlib库加以实现...Platonic Cubical graph) plt.subplot(121) # 绘制子图,创建一个1行2列的图形,并选取第1行第1列的子图作为绘图背景 nx.draw(G) plt.subplot...(122) 创建一个1行2列的图形,选取第1行第2列的子图作为绘图背景 nx.draw(G,pos=nx.circular_layout(G),nodecolor='r',edge_color='b')...networkx(图论)的基本操作 # -*- coding:utf-8 -*- import networkx as nx oo = float('inf') # 创建无向图 G = nx.Graph
]) 为了更好的演示效果,我们使用pyecharts将图动态地演示出来。...本案例中我们采用两种办法简单地构建一个网络结构:使用随机图生成算法生成一个无标度网络;使用一个真实的小型人群接触网络数据集。...def get_node_color(G): #返回每一个节点的颜色组成的列表 color_list = [] for node in G: #使用我们前面创建的状态到颜色的映射字典...in df.columns]) 然后,计算图中节点的度,选择度最高的节点作为种子感染者。...进一步地,我们使用 networkx 提供的随机图生成算法利用 BA 模型生成了一个无标度网络,并在该网络中对疫情的传播进行了模拟,同时与基本的 SIR 模型进行了对比分析。
入门图论及NetworkX的使用. 介绍 图(Graph)是一种表示对象之间关系的抽象数据结构。图由节点(Vertex)和边(Edge)组成,节点表示对象,边表示对象之间的关系。...图可以用于建模各种实际问题,如社交网络、交通网络、电力网络等。 NetworkX是一个用Python编写的库,专门用于创建、操作和研究复杂网络的结构、动态和功能。...NetworkX官方文档(网站):https://networkx.org/; 使用pip安装:pip install networkx并回车。...基本概念 无向图(Undirected Graph) import networkx as nx # 创建一个无向图 G = nx.Graph() # 添加节点 G.add_node(1) G.add_nodes_from...控制台输出结果 - 有向图 有权图(Directed Graph) 创建有权图时需要添加权重信息,且可视化的代码略有不同: import networkx as nx import matplotlib.pyplot
使用XLOOKUP公式来解决这个问题,如下图所示,列F“购买物品”是我们希望从第二个表(下方的表)中得到的,列G显示了列F使用的公式。...尽管表2包含相同客户的多个条目,但出于演示目的,我们仅使用第一个条目的值。例如,对于Harry,我们想带入其购买的“Kill la Kill”。...图1 在Python中实现XLOOKUP 我们将使用pandas库来复制Excel公式,该库几乎相当于Python的电子表格应用程序。...默认情况下,其值是=0,代表行,而axis=1表示列 args=():这是一个元组,包含要传递到func中的位置参数 下面是如何将xlookup函数应用到数据框架的整个列。...根据设计,apply将自动传递来自调用方数据框架(系列)的所有数据。在我们的示例中,apply()将df1['用户姓名']作为第一个参数传递给函数xlookup。
生成网络的邻接矩阵 在图的分析中,一个强大的工具是邻接矩阵,它的条目a[ij] = 1,如果有一条边从节点i到节点j,否则为 0。对于大多数网络,邻接矩阵将是稀疏的(大多数条目为 0)。...准备工作 对于这个示例,我们将需要导入 NetworkX 包,通常使用nx作为名称,导入 Matplotlib 的pyplot模块作为plt,以及从 NumPy 导入一个随机数生成器对象: from numpy.random...做好准备 对于这个示例,我们需要导入 pandas 包作为pd别名和 NumPy 库作为np,并使用以下命令创建一个默认的随机数生成器: from numpy.random import default_rng...这个新列将在相应的列"one"的条目大于0.5时保持True,否则为False: data_frame["four"] = data_frame["one"] > 0.5 现在,我们必须创建一个新的函数...这允许我们通过应用聚合函数快速为每列(或行)生成摘要信息。输出是一个 DataFrame,其中应用的函数的名称作为行,所选轴的标签(例如列标签)作为列。
我们可以使用图神经网络提供的表达能力来做到这一点吗? 数据预处理 准备用于图机器学习的数据集需要大量的预处理。第一个目标是将数据表示为一个有向图,其中维基百科文章作为节点,连接文章的超链接作为边。...因为Cordonnier & Loukas 已经在使用图形建模语言 (GML) 处理并编码了了来自 SNAP 数据集的超链接图结构文件,我们可以轻松地将其导入 NetworkX。...与前面类似,使用Pandas解析SNAP数据集中已完成的导航路径的制表符分隔值,然后处理每个导航路径以删除返回的点击(由Wikispeedia玩家创建的导航从当前页面返回到之前直接访问的页面),并删除每个路径中的最后一篇文章...首先讨论一下图神经网络的一般功能,在图神经网络中,关键思想是根据每个节点的局部邻域为每个节点生成节点嵌入。也就是说,我们可以将信息从其相邻节点传播到每个节点。 上图表示输入图的计算图。...在第 0 层,每个节点的嵌入由它们的初始节点特征 x 给出。在高层上,通过聚合来自每个节点的邻居集的第 k 层嵌入,从第(k-1)层嵌入生成第 k 层嵌入。
import altair as alt import pandas as pd df = pd.read_csv('data.csv') alt.Chart(df).mark_bar().encode...ggplot2 库的可视化库,它可以创建高质量的数据可视化图形,如散点图、柱状图、线图等等。...from plotnine import * import pandas as pd df = pd.read_csv('data.csv') (ggplot(df, aes(x='year', y...Networkx 是一个用于创建、操作和可视化复杂网络的 Python 库。...它支持创建多种类型的网络结构,如有向图、无向图、加权图等等。
流程图(二)利用python绘制网络图 网络图(Network chart)简介 网络图使用节点和连接线来显示事物之间的连接关系,用于说明实体之间的关系。一般分为定向网络图和非定向网络图。...True) plt.show() 定制多样化的网络图 自定义网络图一般是结合使用场景对相关参数进行修改,并辅以其他的绘图知识。...参数信息可以通过官网进行查看,其他的绘图知识则更多来源于实战经验,大家不妨将接下来的绘图作为一种学习经验,以便于日后总结。...绘制多样化的网络图 更多用法可参考:Networkx Tutorial[1] 修改参数 import pandas as pd import numpy as np import networkx as...并通过修改参数或者辅以其他绘图知识自定义各种各样的网络图来适应相关使用场景。
使用我们已经介绍过的 Pandas 工具,你可能只想使用 Python 元组作为键: index = [('California', 2000), ('California', 2010),...我们可以从元组创建多重索引,如下所示: index = pd.MultiIndex.from_tuples(index) index ''' MultiIndex(levels=[['California...请注意,第一列中缺少某些条目:在多重索引表示中,任何空白条目都表示与其上方的行相同的值。...作为额外维度的MultiIndex 你可能会注意到其他内容:我们可以使用带有索引和列标签的简单DataFrame,来轻松存储相同的数据。事实上,Pandas 的构建具有这种等价关系。...类似地,如果你传递一个带有适当元组作为键的字典,Pandas 会自动识别它并默认使用MultiIndex: data = {('California', 2000): 33871648,
顾名思义,该函数对满足特定条件的数字相加。 示例数据集 本文使用从Kaggle找到的一个有趣的数据集。...例如,如果想要Manhattan区的所有记录: df[df['Borough']=='MANHATTAN'] 图2:使用pandas布尔索引选择行 在整个数据集中,看到来自Manhattan的1076...图3:Python pandas布尔索引 使用已筛选的数据框架,可以选择num_calls列并计算总和sum()。...在示例中: 组: Borough列 数据列:num_calls列 操作:sum() df.groupby('Borough')['num_calls'].sum() 图5:pandas groupby...虽然pandas中没有SUMIF函数,但只要我们了解这些值是如何计算的,就可以自己复制/创建相同功能的公式。
,下面进图GML networkx :NetworkX 是一个 Python 包,用于创建、操作和研究复杂网络的结构、动力学和功能 https://networkx.org/documentation...标签传播算法(Label Propagation Algorithm,LPA)是一种快速算法,仅使用网络结构作为指导来发现图中的社区,而无需任何预定义的目标函数或关于社区的先验信息。...[162] 提出了一种使用 ConvGNN 作为编码器的 GAE。 蒙蒂等人。...无论是使用采样还是聚类,模型都会丢失部分图信息。 通过采样,节点可能会错过其有影响力的邻居。 通过聚类,图可能被剥夺了独特的结构模式。 如何权衡算法的可扩展性和图的完整性可能是未来的研究方向。...现在已经覆盖了图的介绍,图的主要类型,不同的图算法,在Python中使用Networkx来实现它们,以及用于节点标记,链接预测和图嵌入的图学习技术,最后讲了GNN应用。
系统动力学也使用一些图理论 - 特别是循环。 路径优化是优化问题的一个子集,它也使用图的概念。 从计算机科学的角度来看,图提供了计算效率。...让我们看一下使用Networkx软件包可以完成的一些常见事情。包括导入和创建图以及可视化图的方法。...例如,nx.DiGraph类允许创建有向图。可以使用单个方法直接创建包含路径的特定图。有关图创建方法的完整列表,请参阅完整文档。链接在本文末尾给出。...networkx函数导入数据集,该函数直接读如pandas DataFrame。...就像图创建一样,多种方法可以将数据从多种格式中输入到图中。
但在使用的时候,往往是将列索引作为区分不同数据的标签。DataFrame的数据结构与SQL数据表或者Excel工作表的结构非常类似,可以很方便地互相转换。...:索引/类似列表 | 使用的列标签;默认值为range(n) dtype:dtype | 使用(强制)的数据类型;否则通过推导得出;默认值为None copy:布尔值 | 从输入复制数据;默认值为False...可以传给DataFrame构造器的数据: 二维ndarray:可以自行指定索引和列标签 嵌套列表或者元组:类似于二维ndarray 数据、列表或元组组成的字典:每个序列变成一列。...▲图3-3 如果某列不存在,为其赋值,会创建一个新列。我们可以用这种方法来添加一个新的列: df['D']=10 df 运行结果如图3-4所示。 ?...可以通过这个数组来选取对应的行,代码如下: df[df.A>0] 运行结果如图3-21所示。 ? ▲图3-21 从结果可以看到,A列中值大于0的所有行都被选择出来了,同时也包括了BCD列。
output: # Series([], dtype: float64) (2)使用ndarray创建Series 使用ndarray作为数据时,传递的索引必须与ndarray具有相同的长度。...的字典创建DataFrame 使用ndarray、list组成的字典作为数据创建DataFrame时,所有的ndarray、list必须具有相同的长度。...DataFrame 使用字典列表作为数据创建DataFrame时,默认使用range(len(list))作为index,字典键的集合作为columns,如果字典没有相应键值对,其值使用NaN填充。...Series字典创建DataFrame 使用Series字典作为数据创建DataFrame时,得到的DataFrame的index是所有Series的index的并集,字典键的集合作为columns。...维度的元组 Panel.size:返回DataFrame的元素数 Panel.values:将对象作为ndarray返回 import pandas as pd import numpy as np
:NetworkX 是一个 Python 包,用于创建、操作和研究复杂网络的结构、动力学和功能 https://networkx.org/documentation/stable/reference/...代表性 RecGNNs 和 ConvGNNs 的时间线如表 II 的第一列所示。...[162] 提出了一种使用 ConvGNN 作为编码器的 GAE。 蒙蒂等人。...无论是使用采样还是聚类,模型都会丢失部分图信息。 通过采样,节点可能会错过其有影响力的邻居。 通过聚类,图可能被剥夺了独特的结构模式。 如何权衡算法的可扩展性和图的完整性可能是未来的研究方向。...现在已经覆盖了图的介绍,图的主要类型,不同的图算法,在Python中使用Networkx来实现它们,以及用于节点标记,链接预测和图嵌入的图学习技术,最后讲了GNN应用。
领取专属 10元无门槛券
手把手带您无忧上云