首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

Excel公式技巧73:获取一列中长度最大的数据值

在《Excel公式技巧72:获取一列中单元格内容的最大长度》中,我们使用一个简单的数组公式: =MAX(LEN(B3:B12)) 获取一列中单元格内容最长的文本长度值。...那么,这个最长的文本是什么呢?我们如何使用公式获取长度最长的文本数据值?有了前面的基础后,这不难实现。...图1 我们已经知道,公式中的: MAX(LEN(B3:B12)) 得到单元格区域中最长单元格的长度值:12 公式中的: LEN(B3:B12) 生成由单元格区域中各单元格长度值组成的数组: {7;6;4...;5;12;6;3;6;1;3} 将上述结果作为MATCH函数的参数,找到最大长度值所在的位置: MATCH(MAX(LEN(B3:B12)),LEN(B3:B12),0) 转换为: MATCH(12,...“数据”,则公式如下图2所示。

6.3K10

Python基于Excel多列长度不定的数据怎么绘制折线图?

本文介绍基于Python语言,读取Excel表格数据,并基于给定的行数范围内的指定列数据,绘制多条曲线图,并动态调整图片长度的方法。  首先,我们来明确一下本文的需求。...现有一个.csv格式的Excel表格文件,其第一列为表示时间的数据,而靠后的几列,也就是下图中紫色区域内的列,则是表示对应日期的属性的数据;如下图所示。  ...,希望用不同颜色、不同线型来表示每一列的数据。...因此,我们还希望绘制出来的图片,可以根据循环中时间的数量(或者说是循环的长度),来动态调整其长度。  明确了需求,即可开始撰写代码。本文所用代码如下。...,也就是处于指定行数内的数据;time就是第一列数据,也就是一个循环内的时间序列,time_x则用于显示图片的x轴刻度——之所以需要这个,是因为我这里希望用字符的形式来表示图片中x轴的刻度(如果用数字的话

9810
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    Python基于Excel多列数据绘制动态长度的折线图

    本文介绍基于Python语言,读取Excel表格数据,并基于给定的行数范围内的指定列数据,绘制多条曲线图,并动态调整图片长度的方法。   首先,我们来明确一下本文的需求。...现有一个.csv格式的Excel表格文件,其第一列为表示时间的数据,而靠后的几列,也就是下图中紫色区域内的列,则是表示对应日期的属性的数据;如下图所示。   ...,希望用不同颜色、不同线型来表示每一列的数据。...因此,我们还希望绘制出来的图片,可以根据循环中时间的数量(或者说是循环的长度),来动态调整其长度。   明确了需求,即可开始撰写代码。本文所用代码如下。...,也就是处于指定行数内的数据;time就是第一列数据,也就是一个循环内的时间序列,time_x则用于显示图片的x轴刻度——之所以需要这个,是因为我这里希望用字符的形式来表示图片中x轴的刻度(如果用数字的话

    18510

    使用Pandas完成data列数据处理,按照数据列中元素出现的先后顺序进行分组排列

    一、前言 前几天在Python钻石交流群【瑜亮老师】给大家出了一道Pandas数据处理题目,使用Pandas完成下面的数据操作:把data列中的元素,按照它们出现的先后顺序进行分组排列,结果如new列中展示...new列为data列分组排序后的结果 print(df) 结果如下图所示: 二、实现过程 方法一 这里【猫药师Kelly】给出了一个解答,代码和结果如下图所示。...(*([k]*v for k, v in Counter(df['data']).items()))] print(df) 运行之后,结果如下图所示: 方法四 这里【月神】给出了三个方法,下面展示的这个方法和上面两个方法的思路是一样的...这篇文章主要盘点了使用Pandas完成data列数据处理,按照数据列中元素出现的先后顺序进行分组排列的问题,文中针对该问题给出了具体的解析和代码演示,一共6个方法,欢迎一起学习交流,我相信还有其他方法,...【月神】和【瑜亮老师】太强了,这个里边东西还是很多的,可以学习很多。

    2.3K10

    如何在 Pandas 中创建一个空的数据帧并向其附加行和列?

    Pandas是一个用于数据操作和分析的Python库。它建立在 numpy 库之上,提供数据帧的有效实现。数据帧是一种二维数据结构。在数据帧中,数据以表格形式在行和列中对齐。...列值也可以作为列表传递,而无需使用 Series 方法。 例 1 在此示例中,我们创建了一个空数据帧。...ignore_index参数设置为 True 以在追加行后重置数据帧的索引。 然后,我们将 2 列 [“薪水”、“城市”] 附加到数据帧。“薪水”列值作为系列传递。序列的索引设置为数据帧的索引。...然后,我们在数据帧后附加了 2 列 [“罢工率”、“平均值”]。 “罢工率”列的列值作为系列传递。“平均值”列的列值作为列表传递。列表的索引是列表的默认索引。...我们还了解了一些 Pandas 方法、它们的语法以及它们接受的参数。这种学习对于那些开始使用 Python 中的 Pandas 库对数据帧进行操作的人来说非常有帮助。

    28030

    VLookup等方法在大量多列数据匹配时的效率对比及改善思路

    那么,在数据量较大,需要批量进行数据匹配查找的情况下,是否有办法进行适当的改善,以提高数据的匹配查找效率呢?...于是,我首先用Match函数构建一个辅助列,用于获取匹配位置,如下图所示: 然后,通过Index函数,直接根据辅助列的位置从订单表里读取相应的数据,如下图所示: 分不同情况执行如下: 单独填充位置列...(Match公式列),用时约15秒; 同时根据已匹配的位置列填充G:L列(Index公式全部列),用时约1秒(双击填充柄直接出现进度条,不出现“正在计算,##%”过程); 位置列和其他数据列同时填充...七、结论 在批量性匹配查找多列数据的情况下,通过对Index和Match函数的分解使用,先单独获取所需要匹配数据的位置信息,然后再根据位置信息提取所需多列的数据,效率明显提升,所需匹配提取的列数越多,...当然,使用公式的方法,即使在一定程度上进行改进,和Power Query相比仍然有很大的差距。因此,在数据量较大,数据处理较为复杂的情况下,建议使用Power Query来进行。

    5.3K50

    使用Python指定列提取连续6位数据的单号(上篇)

    一、前言 前几天在Python最强王者交流群【哎呦喂 是豆子~】问了一个Python数据提取的问题,一起来看看吧。...大佬们请问下 指定列提取连续6位数据的单号(该列含文字、数字、大小写字母等等),连续数字超过6位、小于6位的数据不要,这个为啥有的数据可以提取 有的就提取不出来?...下图是提取成功的: 下图是提取失败的: 二、实现过程 这里【猫药师Kelly】给了一个思路,使用C老师帮忙助力: 不过误报数据有点高 提取连续6位数据的单号(该列含文字、数字、大小写字母、符号等等...),连续数字超过6位、小于6位的数据不要。...这篇文章主要盘点了一个Python正则表达式数据提取的问题,文中针对该问题,给出了具体的解析和代码实现,帮助粉丝顺利解决了问题。

    19730

    使用Python指定列提取连续6位数据的单号(中篇)

    一、前言 前几天在Python最强王者交流群【哎呦喂 是豆子~】问了一个Python数据提取的问题,一起来看看吧。...大佬们请问下 指定列提取连续6位数据的单号(该列含文字、数字、大小写字母等等),连续数字超过6位、小于6位的数据不要,这个为啥有的数据可以提取 有的就提取不出来?...二、实现过程 这里【猫药师Kelly】给了一个思路,使用C老师帮忙助力,每次只提取一种模式,然后update合并。 相当于把每行所有可能列出来,之后再合并。...后来【郑煜哲·Xiaopang】也给了一个思路,如下所示: 不过可惜的是正则表达式不太好用,误报比较大,现在得换思路。【Wayne.Wu】提出多正则表达式匹配规则助力。...这篇文章主要盘点了一个Python正则表达式数据提取的问题,文中针对该问题,给出了具体的解析和代码实现,帮助粉丝顺利解决了问题。

    16320

    Oracle面对“数据倾斜列使用绑定变量”场景的解决方案

    甚至在有些老旧系统,由于在开始开发阶段缺乏认识没有使用到绑定变量,后期并发量增长且无法改造程序时,运维DBA还会不得已去设置cursor_sharing=force来强制使用系统的绑定变量(这是一个万不得已的方案...虽然使用绑定变量给OLTP系统带来了巨大的好处,但也同时带来一些棘手的问题,最典型的就是由于SQL文本中包含绑定变量,优化器无法知道绑定变量代表的具体值,只能使用默认的可选择率,这就可能导致由于无法准确判断值的可选择率而造成选择错误的执行计划...在这种背景下,咨询了公司SQL优化专家赵勇,建议是当遇到在数据倾斜的列上使用绑定变量的情况,应该及时与开发沟通,能否在这类数据分布严重倾斜的列上不用绑定变量,若该列上的值很多,不用绑定变量可能导致大量的硬解析的话...,还可在应用发出SQL前,先判断其传入的值,是否是非典型值,若不是的话,使用非绑定变量的SQL;若是典型值,则使用绑定变量的语句。     ...jingyu.idx_t_skew on jingyu.t_skew(object_id); update jingyu.t_skew set object_id=3 where object_id>3; commit; --查看数据列

    1.8K20

    如何使用Python把数据表里的一些列下的数据(浮点)变成整数?

    一、前言 前几天Python铂金有个叫【Lee】的粉丝问了一个数据处理的问题,这里拿出来给大家分享下。 其实他自己也写出来了,效率各方面也不错,不过需求还远不如此。...二、实现过程 这里【(这是月亮的背面)】大佬先给出了个解决方法,使用applymap()方法,如下图所示: 运行结果如下,是可以满足粉丝的要求的。...不过这还不够,粉丝后来又提需求了,如下所示: 不慌,理性上来说,直接使用循环遍历绝对可行,稍微废点时间。...这篇文章基于粉丝提问,在实际工作中运用Python工具实现了数据批量转换的问题,在实现过程中,巧妙的运用了applymap()函数和匿名函数,顺利的帮助粉丝解决了问题,加深了对该函数的认识。...最后感谢粉丝【Lee】提问,感谢【(这是月亮的背面)】大佬给予的思路和代码支持,感谢粉丝【aVen】、【冫马讠成】、【水方人子】、【学习小白】等人参与探讨和学习。

    1.1K20

    学徒讨论-在数据框里面使用每列的平均值替换NA

    最近学徒群在讨论一个需求,就是用数据框的每一列的平均数替换每一列的NA值。但是问题的提出者自己的代码是错的,如下: ? 他认为替换不干净,应该是循环有问题。...#我好像试着写出来了,上面的这个将每一列的NA替换成每一列的平均值。 #代码如下,请各位老师瞅瞅有没有毛病。...:我是这么想的,也不知道对不对,希望各位老师能指正一下:因为tmp数据框中,NA个数不唯一,我还想获取他们的横坐标的话,输出的结果就为一个list而不是一个数据框了。...答案二:使用Hmisc的impute函数 我给出的点评是:这样的偷懒大法好!使用Hmisc的impute函数可以输入指定值来替代NA值做简单插补,平均数、中位数、众数。...,就数据框的长-宽转换!

    3.6K20

    请解释一下列存储数据库的工作原理,并提供一个使用列存储数据库的实际应用场景。

    请解释一下列存储数据库的工作原理,并提供一个使用列存储数据库的实际应用场景。 列存储数据库的工作原理和实际应用场景 列存储数据库是一种专门用于处理大规模数据分析的数据库类型。...列存储索引:为了加速查询操作,列存储数据库通常会使用列存储索引。列存储索引是一种特殊的索引结构,可以快速定位到包含特定值的列数据。...以下是一个实际的应用场景: 假设我们正在开发一个电商平台,需要存储大量的订单数据。每个订单包含订单号、用户ID、商品ID、购买数量和订单金额等信息。我们可以使用列存储数据库来存储订单数据。...然后,我们可以使用Dask DataFrame提供的API进行数据分析和查询操作。 在上述示例中,我们计算了订单数据的总金额,并查询了用户ID为1001的订单数量。...通过将数据按列存储,并使用压缩和索引等技术进行优化,列存储数据库可以提供高效的查询和分析性能。在电商平台等需要处理大量数据的场景中,列存储数据库可以发挥重要作用。

    6210

    Laravel 使用Excel导出的文件中,指定列数据格式为日期,方便后期的数据筛选操作

    背景 最近,后台运维要求导出的 Excel文件,对于时间的筛选,能满足年份、月份的选择 通过了解,发现: 先前导出的文件,默认列数据都是字符串(文本)格式 同时,因为用的是 Laravel-excel.../excel ①. laravel-excel2.1 版本下实现方式 参考技术文档:Laravel Excel2.1 - Column formatting 参考文章:laravel-excel导出的时候写入的日期格式数据怎么在...excel中正确显示成可以筛选的日期格式数据 提示 1..../** * @notes:获取导出的数据 * @return array 注意返回的数据为 Collection 集合形式 * @author: zhanghj...excel中正确显示成可以筛选的日期格式数据 Laravel Excel 3.1 导出表格详解(自定义sheet,合并单元格,设置样式,格式化列数据)

    12510

    VLookup及Power Query合并查询等方法在大量多列数据匹配时的效率对比及改善思路

    那么,在数据量较大,需要批量进行数据匹配查找的情况下,是否有办法进行适当的改善,以提高数据的匹配查找效率呢?...于是,我首先用Match函数构建一个辅助列,用于获取匹配位置,如下图所示: 然后,通过Index函数,直接根据辅助列的位置从订单表里读取相应的数据,如下图所示: 分不同情况执行如下: 单独填充位置列...(Match公式列),用时约15秒; 同时根据已匹配的位置列填充G:L列(Index公式全部列),用时约1秒(双击填充柄直接出现进度条,不出现“正在计算,##%”过程); 位置列和其他数据列同时填充...七、结论 在批量性匹配查找多列数据的情况下,通过对Index和Match函数的分解使用,先单独获取所需要匹配数据的位置信息,然后再根据位置信息提取所需多列的数据,效率明显提升,所需匹配提取的列数越多,...当然,使用公式的方法,即使在一定程度上进行改进,和Power Query相比仍然有很大的差距。因此,在数据量较大,数据处理较为复杂的情况下,建议使用Power Query来进行。

    4.9K20

    还是使用CCDS数据库的基因坐标信息来计算基因长度吧

    ,有探索过3种方法获取基因长度,然后发现 同样的基因在不同数据库记录的位置信息差距好离谱 所以不得不弃用 TxDb.Hsapiens.UCSC.hg38.knownGene 包。...还是使用CCDS记录文件吧,CCDS 数据库旨在确定一组核心的人类和小鼠蛋白质编码区域,这些区域具有一致的注释和高质量。...在数据库:ftp://ftp.ncbi.nlm.nih.gov/pub/CCDS/ 可以下载,然后需要在Linux或者Mac环境下面使用 bedtools 软件加上perl代码,完成下面的操作。...所以 CDS 数据库不记录 UTR 信息的坐标。只能统计 CDS 区域的总长度,无法统计全外显子 Exon 的总长度,约 35 Mb。...78个碱基,不知道为什么这个CCDS数据库记录它是75bp的长度。

    90010

    盘点使用Pandas解决问题:对比两列数据取最大值的5个方法

    一、前言 前几天在Python星耀交流群有个叫【iLost】的粉丝问了一个关于使用pandas解决两列数据对比的问题,这里拿出来给大家分享下,一起学习。...大概意思是说在DF中有2列数据,想每行取两列数据中的最大值,形成一个新列,该怎么写?最开始【iLost】自己使用了循环的方法写出了代码,当然是可行的,但是写的就比较难受了。...】,这里使用apply方法来解决,代码如下 df['max3'] = df[['cell1', 'cell2']].apply(max, axis=1) df 方法四:【常州-销售-MT】解答 这个方法也是才哥群里的一个大佬给的思路...使用numpy结合pandas,代码如下: df['max4'] = np.where(df['cell1'] > df['cell2'],df['cell1'], df['cell2']) df...这篇文章基于粉丝提问,针对df中,想在每行取两列数据中的最大值,作为新的一列问题,给出了具体说明和演示,一共5个方法,顺利地帮助粉丝解决了问题,也帮助大家玩转Pandas,学习Python相关知识。

    4.3K30

    轻松生产短视频——腾讯多媒体实验室横屏转竖屏技术

    传统的视频宽高比转化的方法通常使用静态裁剪(即使用一个固定的视角窗口对视频进行裁剪,保留窗口内的视频内容,裁剪掉窗口外的部分)和补充黑边(即固定视频长宽比缩放,并在其他位置补充零值)。...DIEM数据集视频时长相对较长,视频长度在0.5-3.3分钟之间。...本文的黑边检测算法原理简单:对视频帧逐行/列进行扫描,若行/列中大部分像素值与某个参考值一致,则认为该行/列存在黑边。具体来说: 1)从视频帧上下左右四个方向进行扫描,以上黑边为例,计算前?...的差异,计算差异超过阈值?_1的像素个数占该行(长度)的比例; 3)判断该比例是否超过阈值?_2,若超过阈值,则认为大部分像素值与参考值一致,是黑边情况,黑边长度加1;否则不是黑边,终止上黑边搜索。...如图17第1列所示,裁剪位置与得分文件包含每一帧裁剪框左上和右下坐标,以及每一帧完整性得分。

    2.6K40
    领券