使用聚宽的python2.7,算出一个表格,感觉挺好 ? 然而我的强迫症又发了,标题为什么对不齐啊。网上一研究,是因为标题是中文所致,解决方法: ? 但是,在聚宽里老是报错,找不到这个key ?.../weekdawn/article/details/81389865 其二,https://www.cnblogs.com/figo-studypath/p/9772630.html 估计跟版本有关 使用
R语言中DataFrame列名作为函数参数 直接传递列名会怎么样? 使用{{}}语法糖 使用enquo函数和!!...语法糖 在使用Tidyverse提供的各种函数时,我们很多时候都会直接传递DataFrame的列名作为函数参数,对对应的列进行操作。如果我们自定义的函数中需要传递列名作为函数参数,如何实现呢?...: 可以发现,直接使用列名传递到函数中会报错,下面介绍两种解决方案: 使用{{}}语法糖 col_mean % summarise...(across({{colname}}, mean)) } 在函数体中使用{{}}将列名括起来即可。...colname, mean)) } 第二种方法是在函数体内部,先使用enquo()函数将列名转为表达式,然后在使用的时候通过!!符号进行提取即可。
在工作中遇到需要对DataFrame加上列名和行名,不然会报错 开始的数据是这样的 需要的格式是这样的: 其实,需要做的就是添加行名和列名,下面开始操作下。...# a是DataFrame格式的数据集 a.index.name = 'date' a.columns.name = 'code' 这样就可以修改过来。
背景介绍 DataFrames和Series是用于数据存储的pandas中的两个主要对象类型:DataFrame就像一个表,表的每一列都称为Series。您通常会选择一个系列来分析或操纵它。...今天我们将学习如何重命名Pandas DataFrame中的列名。 ? 入门示例 ? ? ? ?...上述代码: # ## 如何重命名pandas dataframe中的列名字 # In[32]: import pandas as pd # In[33]: data = pd.read_csv('ufo.csv...# ## 使用rename()进行重命名列明 # In[37]: data.rename(columns={'Shape Reported':'Shape_Reported',\ 'Colors...42]: data = pd.read_csv('ufo.csv',names= data_cols,header=0) data.head() # In[43]: data.columns # ## 使用
Python扩展库pandas的DataFrame对象的pivot()方法可以对数据进行行列互换,或者进行透视转换,在有些场合下分析数据时非常方便。...DataFrame对象的pivot()方法可以接收三个参数,分别是index、columns和values,其中index用来指定转换后DataFrame对象的纵向索引,columns用来指定转换后DataFrame...对象的横向索引或者列名,values用来指定转换后DataFrame对象的值。...为防止数据行过长影响手机阅读,我把代码以及运行结果截图发上来: 创建测试用的DataFrame对象: ? 透视转换,指定index、columns和values: ?...透视转换,不指定values,但可以使用下标访问指定的values: ?
关键技术:对于由DataFrame产生的GroupBy对象,如果用一个(单个字符串)或一组(字符串数组)列名对其进行索引,就能实现选取部分列进行聚合的目的。...如果不想接收GroupBy自动给出的那些列名,那么如果传入的是一个由(name,function)元组组成的列表,则各元组的第一个元素就会用作DataFrame的列名(可以将这种二元元组列表看做一个有序映射...假设我们想要对tip_pct和total_bill列计算三个信息: 上面例子的结果DataFrame拥有层次化的列,这相当于分别对各列进行聚合,然后将结果组装到一起,使用列名用作keys参数:...数据透视表 pivot()的用途就是,将一个dataframe的记录数据整合成表格(类似Excel中的数据透视表功能),pivot_table函数可以产生类似于excel数据透视表的结果,相当的直观。...; index=用于分组的列名或其他分组键,出现在结果透视表的行; columns =用于分组的列名或其他分组键,出现在结果透视表的列; values = 待聚合的列的名称,默认聚合所有数值列;
对列名进行排序 # 读取movie数据集 In[12]: movie = pd.read_csv('data/movie.csv') In[13]: movie.head() Out[13]: ?...串联DataFrame方法 # 使用isnull方法将每个值转变为布尔值 In[30]: movie = pd.read_csv('data/movie.csv') movie.isnull...sum,返回整个DataFrame的缺失值的个数,返回值是个标量 In[32]: movie.isnull().sum().sum() Out[32]: 2654 # 判断整个DataFrame有没有缺失值...,方法是连着使用两个any In[33]: movie.isnull().any().any() Out[33]: True 原理 # isnull返回同样大小的DataFrame,但所有的值变为布尔值...在DataFrame上使用运算符 # college数据集的值既有数值也有对象,整数5不能与字符串相加 In[37]: college = pd.read_csv('data/college.csv'
在实际数据处理过程中,数据透视表使用频率相对较高,今天云朵君就和大家一起学习pandas数据透视表与逆透视的使用方法。...数据基本情况 groupby数据透视表 使用 pandas.DataFrame.groupby 函数,其原理如下图所示。...使用车辆数据集统计不同性别司机的平均年龄,聚合后用二维切片可以输出DataFrame数据框。...默认聚合所有数值列 index 用于分组的列名或其他分组键,出现在结果透视表的行 columns 用于分组的列名或其他分组键,出现在结果透视表的列 aggfunc 聚合函数或函数列表,默认为'mean'...使用pandas.DataFrame.rename_axis去除columns列的名称 # 第一步,重置索引 df_wide = df_pivot.reset_index() # 重置name,设置为None
submission.to_csv("submission.csv", index=False) # index参数是否写入行names键 流处理 当读取大文件的时候,通过chunksize可以分批次读取: # 使用类似迭代器的方式...查看索引和列名 DataFrame.columns DataFrame.index 列属性和索引重排 DataFrame.reindex([columns=['col1','col2','col3'.....重命名索引和轴 data.rename(index=str.title,columns=str.upper) #修改某个索引和列名,可以通过传入字典 data.rename(index={'old_index...、成员资格 obj.unique() obj.value_count() obj.isin(['b','c']) 透视表 table = df.pivot_table(values=["Price","...(row) #columns:透视表的列索引(column) #aggfunc:应用什么函数 #fill_value:空值填充 #margins:添加汇总项 #然后可以对透视表进行筛选 table.query
推荐阅读:和50万人一起学Python 摘要 在用Python做数据分析的过程中,有一些操作步骤和逻辑框架是很固定的,只需要记住其用法即可。本节内容介绍Pandas模块在数据分析中的常用方法。...生成数据直接创建一个Dataframe即可 本次数据为泰坦尼克号数据 2、数据信息查看 目的:了解数据的概况,例如整个数据表的大小、所占空间、数据格式、是否有空值和重复项,为后面的清洗和预处理做准备...例如更改列名: 数据合并: Pandas具有功能全面的高性能内存中连接操作,与SQL等关系数据库非常相似。...4、数据提取和筛选 数据提取:使用loc和iloc配合相关函数。 筛选:使用与,或,非三个条件配合大于,小于和等于对数据进行筛选。...5、数据汇总与统计量计算 关于groupby和数据透视表请阅读:这些祝福和干货比那几块钱的红包重要的多! 相关系数结果: 6、数据存储
透视表使用 ---- 创建数据 S型数据 import numpy as np import pandas as pd pd.Series([1, 3, 5, np.nan, 6, 89]) #...,就是数据库风格的合并 常用参数表格 参数 说明 left 参与合并的左侧DF right 参与合并的右侧DF how 默认是inner,inner、outer、right、left on 用于连接的列名...,默认是相同的列名 left_on \right_on 左侧、右侧DF中用作连接键的列 sort 根据连接键对合并后的数据进行排序,默认是T suffixes 重复列名,直接指定后缀,用元组的形式(’_...由行索引变成列属性 透视表 data: a DataFrame object,要应用透视表的数据框 values: a column or a list of columns to aggregate...values是生成的透视表中的数据 index是透视表的层次化索引,多个属性使用列表的形式 columns是生成透视表的列属性
pivot_table使用方法: ?...格式数据 values:需要汇总计算的列,可多选 index:行分组键,一般是用于分组的列名或其他分组键,作为结果DataFrame的行索引 columns:列分组键,一般是用于分组的列名或其他分组键,...参数aggfunc对应excel透视表中的值汇总方式,但比excel的聚合方式更丰富: ? 如何使用pivot_table? 下面拿数据练一练,示例数据表如下: ?...首先导入数据: data = pd.read_excel("E:\\订单数据.xlsx") data.head() 接下来使用透视表做分析: 计算每个州销售总额和利润总额 result1 = pd.pivot_table...总结 本文介绍了pandas pivot_table函数的使用,其透视表功能基本和excel类似,但pandas的聚合方式更加灵活和多元,处理大数据也更快速,大家有兴趣可探索更高级的用法。
fill_value=None*, *margins=False*, *dropna=True*, *margins_name='All'*, *observed=False*) 参数解释: data:dataframe...格式数据 values:需要汇总计算的列,可多选 index:行分组键,一般是用于分组的列名或其他分组键,作为结果DataFrame的行索引 columns:列分组键,一般是用于分组的列名或其他分组键,...作为结果DataFrame的列索引 aggfunc:聚合函数或函数列表,默认为平均值 fill_value:设定缺失替换值 margins:是否添加行列的总计 dropna:默认为True,如果列的所有值都是...、行、列: 参数aggfunc对应excel透视表中的值汇总方式,但比excel的聚合方式更丰富: 如何使用pivot_table?...首先导入数据: data = pd.read_excel("E:\\订单数据.xlsx") data.head() 接下来使用透视表做分析: 计算每个州销售总额和利润总额 result1 = pd.pivot_table
分组键 分组键可以是多种形式,并且键不一定是完全相同的类型: 与需要分组的轴向长度一致的值列表或者值数组 DataFrame列名的值 可以在轴索引或索引中的单个标签上调用的函数 可以将分组轴向上的值和分组名称相匹配的字典或者...;如果传递的是单个列名,则返回的是Series。...常见的聚合函数: count sum mean median std、var min、max prod fisrt、last 如果想使用自己的聚合函数,...交叉表是透视表的特殊情况 ? 另一种方法:groupby+mean ?...一图看懂透视表 ?
摘要 在用Python做数据分析的过程中,有一些操作步骤和逻辑框架是很固定的,只需要记住其用法即可。本节内容介绍Pandas模块在数据分析中的常用方法。...生成数据直接创建一个Dataframe即可 本次数据为泰坦尼克号数据 2、数据信息查看 目的:了解数据的概况,例如整个数据表的大小、所占空间、数据格式、是否有空值和重复项,为后面的清洗和预处理做准备...例如更改列名: ? 数据合并: Pandas具有功能全面的高性能内存中连接操作,与SQL等关系数据库非常相似。 ?...4、数据提取和筛选 数据提取:使用loc和iloc配合相关函数。 筛选:使用与,或,非三个条件配合大于,小于和等于对数据进行筛选。 ? 5、数据汇总与统计量计算 ?...关于groupby和数据透视表请阅读:这些祝福和干货比那几块钱的红包重要的多! ? 相关系数结果: ? 6、数据存储 ?
Pandas 透视表概述 数据透视表(Pivot Table)是一种交互式的表,可以进行某些计算,如求和与计数等。所进行的计算与数据跟数据透视表中的排列有关。...另外,如果原始数据发生更改,则可以更新数据透视表。...比 pandas.DataFrame.pivot_table 多了一个参数data,data就是一个dataframe,实际上这两个函数相同 pivot_table参数中最重要的四个参数 values...:dataframe.pivot_table() index:行索引,传入原始数据的列名 columns:列索引,传入原始数据的列名 values: 要做聚合操作的列名 aggfunc:聚合函数 custom_info.pivot_table...unsatck: custom_info.groupby(['注册年月','会员等级'])['会员卡号'].count().unstack() 使用透视表可以实现相同效果: 增量等级占比分析,查看增量会员的整体情况
SQL VS Pandas SELECT(数据选择) 在SQL中,选择是使用逗号分隔的列列表(或*来选择所有列): ? 在Pandas中,选择不但可根据列名称选取,还可以根据列所在的位置选取。...在pandas中,Dataframe可以通过多种方式进行过滤,最直观的是使用布尔索引: ?...更多关于Groupy和数据透视表内容请阅读: 这些祝福和干货比那几块钱的红包重要的多! JOIN(数据合并) 可以使用join()或merge()执行连接。...每个方法都有参数,允许指定要执行的连接类型(LEFT, RIGHT, INNER, FULL)或要连接的列(列名或索引) ?...总结: 本文从Pandas里面基本数据结构Dataframe的固定属性开始介绍,对比了做数据分析过程中的一些常用SQL语句的Pandas实现。
重塑 DataFrame 是数据科学中一项重要且必不可少的技能。在本文中,我们将探讨 Pandas Melt() 以及如何使用它进行数据处理。...显示自定义名称 “变量”和“值”是列名。...日期显示为列名,它们很难执行逐日计算,例如计算每日新病例、新死亡人数和新康复人数。 让我们重塑 3 个数据集并将它们合并为一个 DataFrame。...melt() 将DataFrames 从当前的宽格式逆透视为长格式。...这是confirmed_df_long的例子 最后,我们使用merge()将3个DataFrame一个接一个合并: full_table = confirmed_df_long.merge( right
7-数据查看 查看各列数据类型 df.dtypes 8-数据修改|修改类型 将金牌数列类型修改为int df['金牌数'].fillna('0').astype('int') 9-数据增加|新增列(固定值...[9:9] 27-筛选行|通过行号(多行) 提取第10行之后的全部行 df.loc[9:] 28-筛选行|固定间隔 提取0-50行,间隔为3 df.loc[0:50:3] 30-筛选行|判断(大于) 提取金牌数大于...42 - 筛选值 | query 使用query提取金牌数+银牌数 大于 15的国家 df.query('金牌数+银牌数 > 15') 43 - 筛选值|query(引用变量) 使用 query 提取...默认 制作各省「平均销售额」的数据透视表 pd.pivot_table(df,values=['销售额'],index='省/自治区'] 3 - 数据透视|指定方法 制作各省「销售总额」的数据透视表 pd.pivot_table...'mean',sum],margins=True) 9 - 数据透视|筛选 在上一题的基础上,查询 「类别」 等于 「办公用品」 的详情 10 -数据透视|逆透视 逆透视就是将宽的表转换为长的表,例如将第
正因为各列的返回值是一个ndarray,而对于一个dataframe对象各列的唯一值ndarray长度可能不一致,此时无法重组成一个二维ndarray,从这个角度可以理解unique不适用于dataframe...如果说前面的三个函数主要适用于pandas中的一维数据结构series的话(nunique也可用于dataframe),那么接下来的这两个函数则是应用于二维dataframe。...05 pivot_table pivot_table是pandas中用于实现数据透视表功能的函数,与Excel中相关用法如出一辙。 何为数据透视表?...数据透视表本质上仍然数据分组聚合的一种,只不过是以其中一列的唯一值结果作为行、另一列的唯一值结果作为列,然后对其中任意(行,列)取值坐标下的所有数值进行聚合统计,就好似完成了数据透视一般。...在以上参数中,最重要的有4个: values:用于透视统计的对象列名 index:透视后的行索引所在列名 columns:透视后的列索引所在列名 aggfunc:透视后的聚合函数,默认是求均值 这里仍然以求各班每门课程的平均分为例
领取专属 10元无门槛券
手把手带您无忧上云