合并过程中,若A[p…q]和A[q+1…r]之间有值相同的元素,则可像伪代码中那样,先把A[p…q]中的元素放入tmp数组。这就保证值相同的元素,在合并前后的先后顺序不变。...任意时刻,CPU只会有一个函数在执行,也就只会有一个临时内存空间在使用。临时内存空间最大也不会超过n个数据的大小,所以空间复杂度O(n)。 快速排序算法(Quicksort) 快排也是分治思想。...选择数组区间A[0…n-1]的最后一个元素A[n-1]作为pivot,对数组A[0…n-1]原地分区,这样数组就分成三部分,A[0…p-1]、A[p]、A[p+1…n-1]: K 在A[0…p-1]区间查找...p+1=K,则A[p]就是目标 K>p+1, 则第K大元素在A[p+1…n-1] 再继续同样思路递归查找A[p+1…n-1] 时间复杂度分析 第一次分区查找,需对大小为n的数组执行分区操作,遍历n...第二次分区查找,只需对n/2数组分区,遍历n/2个元素 类推,分区遍历元素的个数分别为、n/2、n/4、n/8、n/16.……直到区间为1。
在之前ARTS打卡中,我每次都把算法、英文文档、技巧都写在一个文章里,这样对我的帮助是挺大的,但是可能给读者来说,一下子有这么多的输入,还是需要长时间的消化。...Algorithm LeetCode算法 在排序数组中查找元素的第一个和最后一个位置 (https://leetcode-cn.com/problems/find-first-and-last-position-of-element-in-sorted-array...找出给定目标值在数组中的开始位置和结束位置。 你的算法时间复杂度必须是 O(log n) 级别。 如果数组中不存在目标值,返回 [-1, -1]。...,我们要在数组上进行查找,最笨的方法自然就是用常规的方法进行一个个遍历查找,在这里我们叫他线性扫描。...在找到第一个数字的前提下,我们从数组的尾部往前遍历,遇到第一个目标数字时,就是我们需要的第二个目标数字(因为最左边有一个已经存在了,所以必然存在一个最右边的数字不会产生找不到的情况)。
数组中的第K个最大元素 在未排序的数组中找到第k个最大的元素。请注意,你需要找的是数组排序后的第k个最大的元素,而不是第k个不同的元素。...; for(let i=n-1; i>=n-k; --i){ target = arr[0]; if(i-1>=n-k){ [arr[0]...target; }; 思路 采用大顶堆的数据结构解决问题,大顶堆要求根节点的关键字既大于或等于左子树的关键字值,又大于或等于右子树的关键字值并且为完全二叉树,首先定义adjustHeap函数左调整堆使用...并且以k作为双亲节点沿着路径继续向下调整,否则就结束本次循环,然后定义n作为数组长度,之后将堆中每个作为双亲节点的子树进行调整,使整个树符合大顶堆的特征,之后进行k次循环,由于是大顶堆且已调整完成将顶堆的顶值也就是最大值取出赋值给...target,之后判断是否需要进一步调整,如果需要则交换顶端值与最后一个值,然后调整顶堆符合大顶堆的条件,同样取出顶堆最大值,取出k次即可完成。
Top N问题在搜索引擎、推荐系统领域应用很广, 如果用我们较为常见的语言,如C、C++、Java等,代码量至少也得五行,但是用Python的话,只用一个函数就能搞定,只需引入heapq(堆队列)这个数据结构即可...1)、heapq.nlargest(n, iterable[, key]) 从迭代器对象iterable中返回前n个最大的元素列表,其中关键字参数key用于匹配是字典对象的iterable,用于更复杂的数据结构中...2)、heapq.nsmallest(n, iterable[, key]) 从迭代器对象iterable中返回前n个最小的元素列表,其中关键字参数key用于匹配是字典对象的iterable,用于更复杂的数据结构中...现在有几个需要注意的地方: 1)heapq.heapify(iterable):可以将一个列表转换成heapq 2)在Top N问题中,如果N=1,则直接用max(iterable)/min(iterable...3)如果N很大,接近集合元素,则为了提高效率,采用sort+切片的方式会更好,如: 求最大的N个元素:sorted(iterable, key=key, reverse=True)[:N] 求最小的N个元素
力扣题目: 给定整数数组 nums 和整数 k,请返回数组中第 k 个最大的元素。 请注意,你需要找的是数组排序后的第 k 个最大的元素,而不是第 k 个不同的元素。...冒泡排序 「冒泡排序」:依次比较两个相邻的元素,如果是逆序(从小到大)(a[j]>a[j+1]),则将其交换,最终达到有序化; 冒泡排序,每一轮排序都会将最大值排列出来(第一轮将第一大值置于倒数第一位置...,所以,根据题目求第 k 个最大的元素,我们只需轮询K次即可。 最后返回 [数组长度-K] 下标的值即为所求。...基于快速排序的选择方法 我们可以用快速排序来解决这个问题,先对原数组排序,再返回倒数第 k 个位置,这样平均时间复杂度是 O(nlogn),我们可以改进快速排序算法来解决这个问题:在分解的过程当中,我们会对子数组进行划分...直观地理解如果每次规模为 n 的问题我们都划分成 1 和 n−1,每次递归的时候又向 n−1 的集合中递归,这种情况是最坏的,时间代价是 O(n ^ 2)。
数组中的第K个最大元素 难度中等1787 给定整数数组 nums 和整数 k,请返回数组中第 **k** 个最大的元素。...请注意,你需要找的是数组排序后的第 k 个最大的元素,而不是第 k 个不同的元素。 你必须设计并实现时间复杂度为 O(n) 的算法解决此问题。...class Solution { public: int findKthLargest(vector& nums, int k) { //将数组里面的数据先放到优先级队列中...,默认为大堆 priority_queue p(nums.begin(), nums.end()); //将队列中前k-1个最大的元素pop掉...然后让数组里面剩余元素依次与对头比较,若比对头还大的话,则入堆,反之则跳过,依次循环,直到数组遍历完成。
题目: 给定整数数组 nums 和整数 k,请返回数组中第 k 个最大的元素。 请注意,你需要找的是数组排序后的第 k 个最大的元素,而不是第 k 个不同的元素。...3,2,3,1,2,4,5,5,6] 和 k = 4 输出: 4 提示: 1 <= k <= nums.length <= 104 -104 <= nums[i] <= 104 Related Topics 数组...分治 快速选择 排序 堆(优先队列) 1361 0 思路: 维护一个小根堆,把元素添进去,只要堆大小超过了k值,我们就进行出堆,这样留在最后的就是k个最大数据,其中堆顶就是目前k个最大数据的最小值即我们求的数组中第...k 个最大的元素。
1,问题简述 在未排序的数组中找到第 k 个最大的元素。 请注意,你需要找的是数组排序后的第 k 个最大的元素,而不是第 k 个不同的元素。...3,2,1,5,6,4] 和 k = 2 输出: 5 示例 2: 输入: [3,2,3,1,2,4,5,5,6] 和 k = 4 输出: 4 说明: 你可以假设 k 总是有效的,且 1 ≤ k ≤ 数组的长度...最近的文章排版是不是比以前好太多了,人嘛,总是一步一步在成长,从最开始的文章到现在的文章,自己也在一步一步去做,看在眼里,记在心里。
在未排序的数组中找到第 k 个最大的元素。请注意,你需要找的是数组排序后的第 k 个最大的元素,而不是第 k 个不同的元素。...[3,2,1,5,6,4] 和 k = 2 输出: 5 示例 2: 输入: [3,2,3,1,2,4,5,5,6] 和 k = 4 输出: 4 说明: 你可以假设 k 总是有效的,且 1 ≤ k ≤ 数组的长度...题目提示是分治和堆,所以要效率高一点可以使用堆和快排来实现,快排就是一种分治思想。
我们知道,在Python里面,可以使用 max和 min获得一个列表的最大、最小的元素: a = [4, 2, -1, 8, 100, -67, 25]max_value = max(a)min_value...= min(a) print(max_value)print(min_value) 运行效果如下图所示: 那么问题来了,如何获取最大的3个元素和最小的5个元素?...(f'最大的三个元素:{a[-3:]}') 那有没有其他办法呢?...(3, a)min_five = heapq.nsmallest(5, a) print(f'最大的3个元素:{max_three}')print(f'最小的5个元素:{min_five}') 运行效果如下图所示...它会把原来的列表转换成一个堆,然后取最大最小值。 需要注意,当你要取的是前n大或者前n小的数据时,如果n相对于列表的长度来说比较小,那么使用 heapq的性能会比较好。
给定一个由整数数组 A 表示的环形数组 C,求 C 的非空子数组的最大可能和。 在此处,环形数组意味着数组的末端将会与开头相连呈环状。...(形式上,当0 = 0 时 C[i+A.length] = C[i]) 此外,子数组最多只能包含固定缓冲区 A 中的每个元素一次。...2,3,-2] 输出:3 解释:从子数组 [3] 得到最大和 3 示例 2: 输入:[5,-3,5] 输出:10 解释:从子数组 [5,5] 得到最大和 5 + 5 = 10 示例 3: 输入:[3...,-1,2,-1] 输出:4 解释:从子数组 [2,-1,3] 得到最大和 2 + (-1) + 3 = 4 示例 4: 输入:[3,-2,2,-3] 输出:3 解释:从子数组 [3] 和 [3,-2,2...] 都可以得到最大和 3 示例 5: 输入:[-2,-3,-1] 输出:-1 解释:从子数组 [-1] 得到最大和 -1 题解 求前缀和,对于每一个j,找到[j – k,j)中最小的sj,所以可以想到使用滑动窗口求解
题目要求: 解法一: 直接用 sort 从大到小排序,取第 k 个 var findKthLargest = function (nums, k) { nums.sort((a, b) =>...{ return b - a }); return nums[k - 1]; }; 解法二(优化性能): 使用冒泡排序,取倒数第 k 个 var findKthLargest = function
minTree = new PriorityQueue(); for (int i = 0; i < nums.length; i++) { //每个数都加入到小根堆中。...return minTree.peek(); } } 题解分析 这道题可以用优先队列建立小根堆,将所有数加入到小根堆中,并限制小根堆的个数为 k,因此最大的数在最下边,第 k 大的数就是堆顶的数...数组中的第K个最大元素
1,问题简述 在未排序的数组中找到第 k 个最大的元素。 请注意,你需要找的是数组排序后的第 k 个最大的元素,而不是第 k 个不同的元素。...3,2,1,5,6,4] 和 k = 2 输出: 5 示例 2: 输入: [3,2,3,1,2,4,5,5,6] 和 k = 4 输出: 4 说明: 你可以假设 k 总是有效的,且 1 ≤ k ≤ 数组的长度...3,题解思路 集合的使用 4,题解程序 import java.util.*; import java.util.stream.Collectors; public class FindKthLargestTest...6,总结 本题使用集合的方式进行解决,主要是熟悉一下java的方式,这里分享一下源码解析的文章吧java之ArrayList源码分析
k) { Arrays.sort(nums); return nums[nums.length - k]; } } 第二种做法,BFPRT算法,时间复杂度O(n)
在未排序的数组中找到第 k 个最大的元素。请注意,你需要找的是数组排序后的第 k 个最大的元素,而不是第 k 个不同的元素。...3,2,1,5,6,4] 和 k = 2 输出: 5 示例 2: 输入: [3,2,3,1,2,4,5,5,6] 和 k = 4 输出: 4 说明: 你可以假设 k 总是有效的,且 1 ≤ k ≤ 数组的长度...在真实的面试中遇到过这道题?
#include #define MAX 100001 int a[MAX]; int n; /* 时间复杂度为3*n/2 */ void swap(int i) { if(i...() { int i; for(i=0;in;i++) { swap(i); i++; } } int main() { int i,j; scanf("%d",&n); for...(j=0;jn;j++) scanf("%d",&a[j]); sort(); int min=0,max=0; if(n>1) max=1; i=min;j=max; while(...in && jn) { if(a[min]>a[i]) min=i; if(a[max]<a[j]) max=j; j += 2; i += 2; } if(in...) { if(a[n-1]<a[min]) min=n-1; if(a[n-1]>a[max]) max=n-1; } printf("%d %d",a[max],a[min]
# LeetCode-215-数组中的第K个最大元素 在未排序的数组中找到第 k 个最大的元素。请注意,你需要找的是数组排序后的第 k 个最大的元素,而不是第 k 个不同的元素。...,一次遍历就能完成数组从大到小的构建 寻找排序之后的第k个最大的元素,也就是寻找大顶堆的正序第k个元素 之后一直弹出到k-1为止,下一个位置就是第k个最大的元素 方法2、暴力破解: 排序之后,倒置一下,...简便起见,注意到第 k 个最大元素也就是第 N - k 个最小元素,因此可以用第 k 小算法来解决本问题。 首先,我们选择一个枢轴,并在线性时间内定义其在排序数组中的位置。...为了实现划分,沿着数组移动,将每个元素与枢轴进行比较,并将小于枢轴的所有元素移动到枢轴的左侧。 这样,在输出的数组中,枢轴达到其合适位置。...而在这里,由于知道要找的第 N - k 小的元素在哪部分中,我们不需要对两部分都做处理。 最终的算法十分直接了当 : 随机选择一个枢轴。 使用划分算法将枢轴放在数组中的合适位置 pos。
分类数组-三路快排题目215. 数组中的第K个最大元素给定整数数组 nums 和整数 k,请返回数组中第 k 个最大的元素。...请注意,你需要找的是数组排序后的第 k 个最大的元素,而不是第 k 个不同的元素。你必须设计并实现时间复杂度为 O(n) 的算法解决此问题。...示例 1:输入: [3,2,1,5,6,4], k = 2输出: 5示例 2:输入: [3,2,3,1,2,4,5,5,6], k = 4输出: 4解释首先定义一个变量len表示数组的长度,在外层遍历...定义变量max,初始值是数组的第一项,表示默认当前第一个值最大定义变量index,初始值0,表示当前数组中最大值的索引在内循环从第2个值开始遍历,比较max的值和当前遍历的值如果max小于当前遍历的值,...就把当前的值赋值给max,同时将当前值的索引赋值给index遍历完第一次后,max表示当前最大的元素,然后把当前最大的值从数组中删除继续从外层循环遍历,重复上述操作遍历k次后,将当前第k大值赋值给max
个人主页: 才疏学浅的木子 ♂️ 本人也在学习阶段如若发现问题,请告知非常感谢 ♂️ 本文来自专栏: 算法 算法类型:Hot100题 每日三题 数组中的第K个最大元素 滑动窗口最大值...前K个高频元素 数组中的第K个最大元素 解法一 暴力 先排序再返回 class Solution { public int findKthLargest(int[] nums, int...p.add(nums[i]); } } return p.poll(); } } 滑动窗口最大值...} ans[i-k+1] = nums[list.peekFirst()]; } return ans; } } 前K个高频元素...解法一 优先队列 先遍历获取频数数组再回去前k个 class Solution { public int[] topKFrequent(int[] nums, int k) {
领取专属 10元无门槛券
手把手带您无忧上云