首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

业界使用最多的Python中Dataframe的重塑变形

pivot pivot函数用于从给定的表中创建出新的派生表 pivot有三个参数: 索引 列 值 def pivot_simple(index, columns, values): """...===== color black blue red item Item1 None 2 1 Item2 4 None 3 将上述数据中的...因此,必须确保我们指定的列和行没有重复的数据,才可以用pivot函数 pivot_table方法实现了类似pivot方法的功能 它可以在指定的列和行有重复的情况下使用 我们可以使用均值、中值或其他的聚合函数来计算重复条目中的单个值...对于不用的列使用通的统计方法 使用字典来实现 df_nodmp5.pivot_table(index="ad_network_name",values=["mt_income","impression"...假设我们有一个在行列上有多个索引的DataFrame。

2K10
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    【数据处理包Pandas】数据载入与预处理

    Pandas 表示缺失值的一种方法是使用NaN(Not a Number),它是一个特殊的浮点数;另一种是使用 Python 中的None,Pandas 会自动把None转变成NaN。...isnull():判断每个元素是否是缺失值,会返回一个与原对象尺寸相同的布尔性 Pandas 对象 notnull():与isnull()相反 dropna():返回一个删除缺失值后的数据对象 fillna...duplicates方法返回一个布尔值的 series ,反映每一行是否与之前的行重复。...duplicates格式为: DataFrame.duplicated(subset=None, keep='first') subset:可选参数,用于指定要检查重复值的列名或列名列表。...(subset=None, keep='first', inplace=False, ignore_index=False) subset:可选参数,用于指定要检查重复值的列名或列名列表。

    11810

    【Python】数据评估

    无论是Series对象还是DataFrame对象,都有isnull()方法,返回一个布尔值列表或者布尔值图表,能告诉我们原来对象的每个元素值是否为空缺值。 6....如果DataFrame对象,如果希望指定某几列,则使用参数(subset("列名1","列名2")),当某行与前面一行在这两列上值完全相同时,会返回Frue。...但这种方法不会修改原来的图表,而是会返回一个新的修改后的图表。 2. 使用set_index("列名")方法可以把这个列名作为索引,并返回一个新的图表。...而reset_index()方法可以把当前索引作为一列的列名,然后使用位置索引,并返回一个新的图表。...如果缺失值较多,那么可以使用fillna()方法,会把缺失值替换成传入的参数;当往fillna()中传入的是字典时,可以同时替换不同列的缺失值。 3.

    7600

    技术译文 | MySQL 8 中检查约束的使用

    什么是“检查约束”? 这是一项新功能,用于指定在插入或更新到一行之前检查值的条件。...如果表的任何行的搜索条件的结果为 FALSE,则约束可能返回错误(但如果结果为 UNKNOWN 或 TRUE,则约束不会返回错误)。...此功能开始在 MySQL 8.0.16 上运行,在以前的版本中,我们可以创建它,但它不起作用,这意味着支持语法,但不起作用。...要牢记的使用规则: AUTO_INCREMENT 自增列不允许使用 引用另一个表中的另一列不允许使用 存储的函数和用户定义的函数不允许使用 存储过程和函数参数不允许使用 子查询不允许使用 在外键中用于后续操作...(case when (`age` > 21) then 1 else 0 end) else 1 end) = 1)) ) ENGINE=InnoDB AUTO_INCREMENT=4; 我们可以使用此功能在表中添加更多的逻辑

    1.1K20

    python pandas 基础之一

    value_counts(), 返回各个不同的元素,并计算元素在Series中的个数。 isin(), 用来判断所属关系,判断给定的一列元素是否包含在Series数据结构中。isin()返回布尔值。...s=pd.Series([1,2,3,4,np.NaN,5]) isnull()和notnull()用来判断NaN元素,返回布尔值。在通过布尔值可以取出不为空的值或者空值。...data={('colors':[],'object':[],'price':[])} frame=pd.DataFrame(data) 也可以只选取data中的部分数据来构造DataFrame() frame...获取索引的列表:frame.index 获取所有的元素:frame.values 获取一列,用列名称即可:frame['price'],返回一个Series对象 另一种获取列的方法:frame.price...转置:frame.T 用嵌套字典生成DataFrame对象,pandas会将外部的键当作列名称,将内部的键当作index索引。

    1.4K50

    R基础

    常用函数 dim()函数返回数据的维度 length()函数返回数据的长度 str()函数返回数据的结构 class()函数返回数据的类型 mode()函数返回数据的存储方式 names()函数返回数据的列名...,因为DataFrame是有列名的,所以还可以通过列名来进行索引,这种索引方式与python中的DataFrame索引有一些区别: 传入单个索引默认是对列的索引如data[1]将取出第一列的数据。...对列名的直接索引可以传入一个列名组成的字符串向量,也可以使用data$colname的方式,这种方式的索引只适用于取出一列,且返回的是一个vector而不是一个DataFrame。...另外一个与with函数类似的是within函数,该函数会在重构的环境运行程序,但是该函数会在程序执行结束后执行一次检查,将不与全局环境冲突的变量保存下来,换言之在within中是可以修改DataFrame...不过需要注意的是对索引值加上[]时,会直接返回列表中元素的值,而如果不加则会返回一个列表,这与之前的索引稍有区别(有点类似于python中对DataFrame切片的感觉,试了下好像R中的DataFrame

    86520

    python单细胞学习笔记-day4

    01:20:19 numpy 矩阵:没有行名和列名 numpy 矩阵:推荐只存放一种数据类型的数据,但可允许多种数据类型 2.1 新建矩阵 使用numpy模块中的array()函数 2.2 取子集 使用下标和切片法...Note:会丢失行名和列名 df2.values df2.to_numpy() np.array(df2) 2.4 转置 m1.T 3.数据框 3.1 新建数据框 方式1: DataFrame函数:创建一个字典...,然后传递给pandas中的DataFrame()函数 可以使用index参数指定行名 方式2:从csv文件读取 import pandas as pd df2 = pd.read_csv("day3...df1[['gene']] # 返回数据框 提取多列:在方括号里面写有列名组成的列表 3.3 提取行和列 .iloc:基于整数位置 loc:基于标签(行名或者列名)或是布尔值 import pandas...[0]) print(df1.iloc[0,]) print(df1.iloc[0,:]) 提取多行多列: .loc() 按照行名列名取子集 .loc按照布尔值取子集:使用多个条件时,可以用and/or

    5300

    pandas分组聚合转换

    ,比如根据性别,如果现在需要根据多个维度进行分组,只需在groupby中传入相应列名构成的列表即可。...无法对特定的列使用特定的聚合函数 无法使用自定义的聚合函数 无法直接对结果的列名在聚合前进行自定义命名 可以通过agg函数解决这些问题: 当使用多个聚合函数时,需要用列表的形式把内置聚合函数对应的字符串传入...,其中字典以列名为键,以聚合字符串或字符串列表为值 gb.agg({'Height':['mean','max'], 'Weight':'count'}) 使用自定义函数  在agg中可以使用具体的自定义函数...47.918519 1 173.62549 72.759259 2 173.62549 72.759259 组索引与过滤 过滤在分组中是对于组的过滤,而索引是对于行的过滤,返回值无论是布尔列表还是元素列表或者位置列表...']],因此所有表方法和属性都可以在自定义函数中相应地使用,同时只需保证自定义函数的返回为布尔值即可。

    12010

    golang 中函数使用值返回与指针返回的区别,底层原理分析

    变量内存分配与回收 堆与栈的区别 变量内存分配逃逸分析 检查该变量是在栈上分配还是堆上分配 函数内变量在堆上分配的一些 case 函数使用值与指针返回时性能的差异 其他的一些使用经验 总结 变量内存分配与回收...栈的生长和收缩都是自动的,由编译器插入的代码自动完成,因此位于栈内存中的函数局部变量所使用的内存随函数的调用而分配,随函数的返回而自动释放,所以程序员不管是使用有垃圾回收还是没有垃圾回收的高级编程语言都不需要自己释放局部变量所使用的内存...上文介绍了 Go 中变量内存分配方式,通过上文可以知道在函数中定义变量并使用值返回时,该变量会在栈上分配内存,函数返回时会拷贝整个对象,使用指针返回时变量在分配内存时会逃逸到堆中,返回时只会拷贝指针地址...那在函数中返回时是使用值还是指针,哪种效率更高呢,虽然值有拷贝操作,但是返回指针会将变量分配在堆上,堆上变量的分配以及回收也会有较大的开销。...,如果对象的生命周期存在比较久或者对象比较大,可以使用指针返回; 3、大对象推荐使用指针返回,对象大小临界值需要在具体平台进行基准测试得出数据; 4、参考一些大的开源项目中的使用方式,比如 kubernetes

    5.4K40

    使用 gosec 检查 Go 代码中的安全问题

    传统意义上,linter 更注重的是检查代码中编码问题、bug、代码风格之类的问题,它们可能不会发现代码中的安全问题。...例如,Coverity 是一个很流行的工具,它可以帮助寻找 C/C++ 代码中的问题。然而,也有一些工具专门用来检查源码中的安全问题。例如,Bandit 可以检查 Python 代码中的安全缺陷。...而 gosec 则用来搜寻 Go 源码中的安全缺陷。gosec 通过扫描 Go 的 AST( 抽象语法树(abstract syntax tree))来检查源码中的安全问题。...开始使用 gosec 在开始学习和使用 gosec 之前,你需要准备一个 Go 语言写的项目。有这么多开源软件,我相信这不是问题。你可以在 GitHub 的 热门 Golang 仓库中找一个。...这里,gosec 报出了一个可能需要你检查目录的权限是否安全的问题。

    2.6K20

    PySpark 数据类型定义 StructType & StructField

    虽然 PySpark 从数据中推断出模式,但有时我们可能需要定义自己的列名和数据类型,本文解释了如何定义简单、嵌套和复杂的模式。...StructType是StructField的集合,它定义了列名、列数据类型、布尔值以指定字段是否可以为空以及元数据。...还可以使用 toDDL() 从模式生成 DDL。结构对象上的 printTreeString() 打印模式,类似于 printSchema() 函数返回的结果。...DataFrame 中是否存在列 如果要对DataFrame的元数据进行一些检查,例如,DataFrame中是否存在列或字段或列的数据类型;我们可以使用 SQL StructType 和 StructField...对于第二个,如果是 IntegerType 而不是 StringType,它会返回 False,因为名字列的数据类型是 String,因为它会检查字段中的每个属性。

    1.3K30

    史上最全!用Pandas读取CSV,看这篇就够了

    DataFrame,当然按照参数的要求会返回指定的类型。...05 列名 names用来指定列的名称,它是一个类似列表的序列,与数据一一对应。如果文件不包含列名,那么应该设置header=None,列名列表中不允许有重复值。...]) 08 返回序列 将squeeze设置为True,如果文件只包含一列,则返回一个Series,如果有多列,则还是返回DataFrame。...# 布尔型,默认为True # 不自动识别空值 pd.read_csv(data, keep_default_na=False) na_filter为是否检查丢失值(空字符串或空值)。...# 布尔型,默认为True pd.read_csv(data, na_filter=False) # 不检查 19 日期时间解析 日期时间解析器参数date_parser用于解析日期的函数,默认使用dateutil.parser.parser

    76K811

    Series计算和DataFrame常用属性方法

    Series的布尔索引 从Series中获取满足某些条件的数据,可以使用布尔索引 然后可以手动创建布尔值列表 bool_index = [True,False,False,False,True] scientists...只需要将布尔值作为索引就可以获得对应的元素 sci[sci['Age']>age_mean] Series 的运算 Series和数值型变量计算时,变量会与Series中的每个元素逐一进行计算 两个Series...  索引不同的元素最终计算的结果会填充成缺失值,用NaN表示.NaN表示Null DataFrame常用属性方法 ndim是数据集的维度  size是数据集的行数乘列数  count统计数据集每个列含有的非空元素...也可以利用布尔索引获取某些元素(使用逻辑运算获取最小值) 更改Series 和DataFrame 通过set_index()方法设置行索引名字 加载数据文件时,如果不指定行索引,Pandas会自动加上从...,再赋值回去 3.通过dataframe[列名]添加新列 4.使用insert()方法插入列 loc 新插入的列在所有列中的位置(0,1,2,3...) column=列名 value=值 # index

    11210

    Pandas数据排序:单列与多列排序详解

    本文将由浅入深地介绍Pandas中单列和多列排序的方法、常见问题及报错,并提供解决方案。 单列排序 基本概念 单列排序是指根据DataFrame中的某一列的数据值对整个DataFrame进行排序。...sort_values()方法同样支持多列排序,只需传入一个包含多个列名的列表即可。排序时,Pandas会按照列表中列的顺序依次排序。...如果指定的列名不存在于DataFrame中,将会抛出KeyError异常。...确保提供的列名正确无误。 解决方案: 仔细检查列名拼写。 使用df.columns查看所有列名。 性能优化 对于大型数据集,排序操作可能比较耗时。可以通过减少不必要的列或使用更高效的算法来优化性能。...解决方案: 只选择需要排序的列。 使用inplace=True直接在原DataFrame上进行排序,避免创建副本。

    24110

    pandas库的简单介绍(2)

    3、 DataFrame数据结构 DataFrame表示的是矩阵数据表,每一列可以是不同的值类型(数值、字符串、布尔值等)。...3.1 DataFrame的构建 DataFrame有多种构建方式,最常见的是利用等长度的列表或字典构建(例如从excel或txt中读取文件就是DataFrame类型)。...[列名]进行移除;增加列有两个方法:1,直接frame[列名]=值;2,frame[列名]=Series对象,如果被赋值的列不存在,会生成一个新列。...如果索引序列唯一则返回True is_monotonic 如果索引序列递增则返回True 4 pandas基本功能 这里主要关注Series或DataFrame数据交互的机制和最主要的特性。...在DataFrame中,reindex可以改变行索引、列索引,当仅传入一个序列,会默认重建行索引。

    2.4K10

    用Python将时间序列转换为监督学习问题

    我们可以定义一个由 10 个数字序列组成的伪时间序列数据集,该例子中,DataFrame 中的单个一列如下所示: from pandas import DataFrame df = DataFrame(...函数返回一个单个的值: return: 序列的 Pandas DataFrame 转为监督学习。 新数据集创建为一个 DataFrame,每一列通过变量字数和时间步命名。...这使得开发者能设计各种各样时间步序列类型的预测问题。 当 DataFrame 被返回,你可以决定怎么把它的行,分为监督学习的 X 和 y 部分。这里可完全按照你的想法。...一步的单变量预测 在时间序列预测中,使用滞后观察(比如 t-1)作为输入变量来预测当前时间不,是通用做法。这被称为一步预测(one-step forecasting)。...还可以看到,NaN 值得行,已经自动从 DataFrame 中移除。我们可以用随机数字长度的输入序列重复该例子,比如 3。这可以通过把输入序列的长度确定为参数来实现。

    3.8K20

    数据分析利器--Pandas

    (参考:Series与DataFrame) DataFrame:一个Datarame表示一个表格,类似电子表格的数据结构,包含一个经过排序的列表集,它们每一个都可以有不同的类型值(数字,字符串,布尔等等...与其它你以前使用过的(如R 的 data.frame)类似Datarame的结构相比,在DataFrame里的面向行和面向列的操作大致是对称的。...文件路径 sep或者delimiter 字段分隔符 header 列名的行数,默认是0(第一行) index_col 列号或名称用作结果中的行索引 names 结果的列名称列表 skiprows 从起始位置跳过的行数...(): 将无效值替换成为有效值 具体用法参照:处理无效值 4、Pandas常用函数 函数 用法 DataFrame.duplicated() DataFrame的duplicated方法返回一个布尔型...DataFrame.drop_duplicates() 它用于返回一个移除了重复行的DataFrame DataFrame.fillna() 将无效值替换成为有效值 5、Pandas常用知识点 5.1

    3.7K30
    领券