首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

如何微调BERT模型进行文本分类

BERT 使用注意力机制以及学习单词之间上下文关系的Transformer 。Transformer 由两个独立的部分组成 - 编码器和解码器。编码器读取输入文本,解码器为任务生成预测。...与顺序读取输入文本的传统定向模型相比,transformer 的编码器一次读取整个单词序列。由于 BERT 的这种特殊结构,它可以用于许多文本分类任务、主题建模、文本摘要和问答。...在本文中,我们将尝试微调用于文本分类的 BERT 模型,使用 IMDB 电影评论数据集检测电影评论的情绪。...我们已经快速了解了什么是BERT ,下面开始对 BERT 模型进行微调以进行情感分析。我们将使用 IMDB 电影评论数据集来完成这项任务。...我们将使用预训练的“bert-base-uncased”模型和序列分类器进行微调。为了更好地理解,让我们看看模型是如何构建的。

2.6K10

使用QLoRA对Llama 2进行微调的详细笔记

使用QLoRA对Llama 2进行微调是我们常用的一个方法,但是在微调时会遇到各种各样的问题,所以在本文中,将尝试以详细注释的方式给出一些常见问题的答案。...与使用较小深度学习模型的迁移学习技术不同,在迁移学习技术中,我们需要冻结像AlexNet这样的神经网络的较低层,然后在新任务上对分类层进行完全微调,而使用llm进行这种微调的成本是巨大的。...标记器将输入文本转换为标记,这些标记是NLP模型使用的基本文本单位。它还提供了额外的功能,如填充、截断和注意力掩码等。AutoTokenizer简化了为NLP任务对文本数据进行标记的过程。...可以选择各种管道任务的列表,像“图像分类”,“文本摘要”等。还可以为任务选择要使用的模型。为了定制也可以添加一个参数来进行某种形式的预处理,如标记化或特征提取。...我们将在没有任何量化配置的情况下执行此操作,因为我们不需要对其进行微调,只是想将其与适配器合并。还在第13行重新加载标记器,并进行与之前在第13 - 14行中所做的相同的修改。

6.1K31
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    命名实体识别之使用tensorflow的bert模型进行微调

    我们知道tensorflow的官方bert模型里面包含了很多内容,在进行微调时有许多部分都是我们用不到的,我们需要截取一些用到的部分,使得我们能够更容易进行扩展,接下来本文将进行一一讲解。...1、需要的文件 tokenization.py:用于对数据进行处理,主要是分词用; modeling.py:bert模型; optimization.py:用于生成优化器; ?...bert相关的参数,然后创建相关的优化器;接下来的就是正常的训练和测试的代码了; 4、其它的一些代码 配置文件:config.py import sys sys.path.append("/content...的微调学习率 self.batch_size = 8 # BERT预训练模型的存放地址 self.bert_file = '/content/drive...CUDA_VISIBLE_DEVICES"] = str(gpu_id) def get_text_and_label(input_tokens_list, y_list): """ 还原每一条数据的文本的标签

    5K20

    使用SimHash进行海量文本去重

    SimHash算法思想   假设我们有海量的文本数据,我们需要根据文本内容将它们进行去重。...SimHash算法是Google公司进行海量网页去重的高效算法,它通过将原始的文本映射为64位的二进制数字串,然后通过比较二进制数字串的差异进而来表示原始文本内容的差异。 回到顶部 3....SimHash存储和索引   经过simhash映射以后,我们得到了每个文本内容对应的simhash签名,而且也确定了利用汉明距离来进行相似度的衡量。...当文本内容较长时,使用SimHash准确率很高,SimHash处理短文本内容准确率往往不能得到保证;   2....文本内容中每个term对应的权重如何确定要根据实际的项目需求,一般是可以使用IDF权重来进行计算。

    2.5K20

    使用SPIN技术对LLM进行自我博弈微调训练

    2024年是大型语言模型(llm)的快速发展的一年,对于大语言模型的训练一个重要的方法是对齐方法,它包括使用人类样本的监督微调(SFT)和依赖人类偏好的人类反馈强化学习(RLHF)。...这个流程是不是很像GAN,但是还是不太一样 SPIN的动态涉及使用监督微调(SFT)数据集,该数据集由输入(x)和输出(y)对组成。这些示例由人工注释,并作为训练主模型识别类人响应的基础。...但是这里就要求我们必须要有一个训练好的模型作为对手模型,所以SPIN算法只适合在训练结果上进行微调。 SPIN算法 SPIN从预训练的模型生成合成数据。然后使用这些合成数据对新任务上的模型进行微调。...他们用RMSProp优化器训练Zephyr-7B-SFT-Full,所有迭代都没有权重衰减,就像通常用于微调llm一样。全局批大小设置为64,使用bfloat16精度。...论文中没有明确提到lambda的具体值,因为它可能会根据所使用的特定任务和数据集进行调优。

    65410

    使用NLPAUG 进行文本数据的扩充增强

    但是对于文本数据,这种技术现在应用的还很少,所以在本文中我们将介绍如何使用Python的nlpag库进行文本扩充。...nlpag的context_word_embs()函数利用上下文词嵌入来查找前n个相似的词进行增强。可以使用action 参数指定要应用的一种操作类型:插入或替换。...需要说明的是L:TF-IDF模型必须在数据集上进行训练,之后可以使用nlpag的TfIdfAug()函数根据分数插入或替换单词。...nlpag的nlpag . augmester .sentence模块提供了四个句子增强器: 1、抽象摘要 抽象摘要是对给定文本进行简洁总结的任务,该摘要捕获了原始内容的关键概念和含义。...LAMBADA文本增强利用语言模型,如GPT或BERT,通过预测给定上下文的缺失单词来生成新句子。 使用LAMBADA增强器是在句子结构中引入多样性和提高NLP模型训练数据质量的极好方法。

    35330

    使用sklearn自带的贝叶斯分类器进行文本分类和参数调优

    Part 1: 本篇内容简介 在前一篇文章完整手写一个朴素贝叶斯分类器,完成文本分类,我们使用首先假设在文档中出现的单词彼此独立,利用贝叶斯定理,完成了一个简单的文本分类器的编写,在真实数据的测试上,...我们使用和上一篇博客同样的数据,使用sklearn自带的贝叶斯分类器完成文本分类,同时和上一篇文章手写的分类器,进行分类精度、速度、灵活性对比。...,使用sklearn自带的多项式模型贝叶斯分类器,使用相同的训练集和测试集,结果后者在测试集上的精度达到了79%,比我们原始手写的精度高出将近10%百分点,效果显而易见,并且训练和分类的速度也大大提高。...下面我们使用sklearn自带的伯努利模型分类器进行实验。...,在文本分类方面的精度相比,差别不大,我们可以针对我们面对的具体问题,进行实验,选择最为合适的分类器。

    2K61

    使用 Python 和 Tesseract 进行图像中的文本识别

    本文将介绍如何使用 Python 语言和 Tesseract OCR 引擎来进行图像中的文本识别。...特别是,我们会使用 PIL(Python Imaging Library)库来处理图像,使用 pytesseract 库来进行文本识别。 准备工作 首先,我们需要安装必要的库和软件。...pip install Pillow pip install pytesseract 代码示例 下面是一个简单的代码示例,演示如何使用这些库进行图像中的文本识别。...加载图像:使用 PIL 的 Image.open() 函数加载图像。 文本识别:使用 pytesseract 的 image_to_string() 函数进行文本识别。...总结 通过这篇文章,我们学习了如何使用 Python 和 Tesseract 进行图像中的文本识别。这项技术不仅应用广泛,而且实现起来也相对简单。

    85630

    如何使用OpenAttack进行文本对抗攻击

    关于OpenAttack OpenAttack是一款专为文本对抗攻击设计的开源工具套件,该工具基于Python开发,可以处理文本对抗攻击的整个过程,包括预处理文本、访问目标用户模型、生成对抗示例和评估攻击模型等等...功能&使用 OpenAttack支持以下几种功能: 高可用性:OpenAttack提供了易于使用的API,可以支持文本对抗攻击的整个过程; 全面覆盖攻击模型类型:OpenAttack支持句子/单词/字符级扰动和梯度...; OpenAttack的使用范围非常广,其中包括但不限于: 为攻击模型提供各种评估基线; 使用其全面评估指标综合评估攻击模型; 借助通用攻击组件,协助快速开发新的攻击模型; 评估机器学习模型对各种对抗攻击的鲁棒性...; 通过使用生成的对抗示例丰富训练数据,进行对抗训练以提高机器学习模型的鲁棒性; 工具模块 工具安装 我们可以使用pip安装,或者克隆该项目源码来安装OpenAttack。...内置了一些常用的文本分类模型,如LSTM和BERT,以及用于情感分析的SST和用于自然语言推理的SNLI等数据集。

    1.4K20

    支招 | 使用Pytorch进行文本分类

    [batch_size, time_step, hidden_dims]的Tensor; 将第一步拆出的两个Tensor进行相加运算得到h(shape:[batch_size, time_step, hidden_dims...将第二步的h进行tanh()激活,得到m(shape:[batch_size, time_step, hidden_dims]),留待后续进行残差计算; 将atten_w的2、3维度进行调换,并与m进行矩阵的乘法运算...:softmax_w(shape:[batch_size, time_step, time_step]); 将h的2、3维度进行调换,并与softmax_w进行矩阵运算,得到基于权重的context(shape...:[batch_size, hidden_dims, time_step]); 将h的2、3维度进行调换,并与context进行求和运算,得到context_with_attn(shape:[batch_size...前言 文本分类不是生成式的任务,因此只使用Transformer的编码部分(Encoder)进行特征提取。

    2.2K21

    快速使用Python进行文本情感分析

    文本情感分析是自然语言处理的一个重要部分,与语音情感分析类似,通过处理提取给定文本中的信息来衡量说话者/作者的态度和情绪,主要用于电影、商品以及社交媒体的用户评论分析等。 ?...VADER是一个基于词典和规则的情感分析开源python库,该库开箱即用,不需要使用文本数据进行训练,安装好之后即可输入想要识别的文本进行情感分析。...与传统的情感分析方法相比,VADER具有很多优势: 适用于社交媒体等多种文本类型 不需要任何训练数据 速度快,可以在线使用流数据 其Github代码地址与论文说明地址如下: Github地址 https...pip install vaderSentiment 安装好以后,通过简单的三行代码即可实现你想要的文本情绪分析。...转折词:使用像“but”这样的连词表示情绪的变化,例如“The food here is great,but the service is horrible”这句话中情绪喜忧参半,但转折词后的部分决定整体情绪评价

    8.7K30

    使用pytorch进行文本分类——ADGCNN

    前言 在文本分类任务中常用的网络是RNN系列或Transformer的Encoder,很久没有看到CNN网络的身影(很久之前有TextCNN网络)。...本文尝试使用CNN网络搭建一个文本分类器,命名为:ADGCNN。...其中一个在卷积计算之后使用sigmoid进行激活,另一个不进行激活只进行卷积计算,然后将这两个计算结果进行点乘计算,得到结果。..._1的输出加上一个开关(可以控制哪些信息可以通过,哪些信息不可以通过);GLU+残差结构[在这里插入图片描述] 网络结构 [在这里插入图片描述] 模型细节 input:在本任务中除了把字向量作为输入特征外...:在实践中,使用学习率lr=0.001进行训练,在训练集的准确率为:99.14%,验证集准确率为:97.78%。

    1.9K51

    vuetify富文本编辑器_vue富文本编辑器的使用

    由于该编辑器升级到了5.0版本,会导致下文中的某些文件找不到的情况,但是封装思路是相同的,如需继续使用请使用下面的版本再次尝试 “@tinymce/tinymce-vue”: “^1.1.0” “tinymce...”: “^4.8.5” vue cli 3 + tinymce5.0版本整合参考:点击前往 最近再弄一个后台管理系统,挑选了不少的编辑器,最终选择了tinymce,UI精美,功能模块多,可按需加载配置...,直接通过组件配置api-key直接使用,像我这种懒的注册或者购买的直接下载tinymce,自力更生 安装tinymce-vue npm install @tinymce/tinymce-vue -S...,//顶部菜单栏显示 } 扩展插件 默认的编辑器只有基本功能,如果还需要上传图片,插入表格之类的功能就需要添加插件 如添加上传图片和插入表格的插件 import 'tinymce/plugins/image...alignjustify | bullist numlist outdent indent | lists image media table | removeformat', 这里我们一般会再次把它进行封装一下

    2.8K10
    领券