首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

使用我自己的数据集在Keras中创建自定义数据生成器

在Keras中创建自定义数据生成器可以帮助你高效地处理大型数据集,尤其是在内存有限的情况下。以下是关于自定义数据生成器的基础概念、优势、类型、应用场景以及如何解决问题的详细解答。

基础概念

自定义数据生成器是一个Python生成器,它可以在训练过程中按需生成数据批次。Keras提供了Sequence类,你可以继承这个类来创建自定义数据生成器。

优势

  1. 内存效率:对于大型数据集,一次性加载所有数据到内存是不现实的。自定义数据生成器可以按需加载数据,节省内存。
  2. 实时数据增强:可以在生成器中进行实时数据增强,增加模型的泛化能力。
  3. 灵活性:可以根据具体需求定制数据加载和预处理的逻辑。

类型

自定义数据生成器通常分为两类:

  1. 简单生成器:直接在训练循环中使用Python生成器。
  2. 继承Sequence:创建一个类继承自keras.utils.Sequence,这样可以更好地与Keras集成,并且可以利用多线程加速数据加载。

应用场景

  • 图像分类:处理大量图像数据时。
  • 时间序列预测:按时间窗口生成数据批次。
  • 语音识别:处理长音频文件时。

示例代码

以下是一个简单的自定义数据生成器的示例,继承自keras.utils.Sequence

代码语言:txt
复制
import numpy as np
from keras.utils import Sequence

class CustomDataGenerator(Sequence):
    def __init__(self, list_IDs, labels, batch_size=32, dim=(32, 32, 32), n_channels=1, n_classes=10, shuffle=True):
        self.list_IDs = list_IDs
        self.labels = labels
        self.batch_size = batch_size
        self.dim = dim
        self.n_channels = n_channels
        self.n_classes = n_classes
        self.shuffle = shuffle
        self.on_epoch_end()

    def __len__(self):
        return int(np.floor(len(self.list_IDs) / self.batch_size))

    def __getitem__(self, index):
        indexes = self.indexes[index*self.batch_size:(index+1)*self.batch_size]
        list_IDs_temp = [self.list_IDs[k] for k in indexes]
        X, y = self.__data_generation(list_IDs_temp)
        return X, y

    def on_epoch_end(self):
        self.indexes = np.arange(len(self.list_IDs))
        if self.shuffle == True:
            np.random.shuffle(self.indexes)

    def __data_generation(self, list_IDs_temp):
        X = np.empty((self.batch_size, *self.dim, self.n_channels))
        y = np.empty((self.batch_size), dtype=int)
        for i, ID in enumerate(list_IDs_temp):
            # Load data from your dataset
            X[i,] = self.load_data(ID)
            y[i] = self.labels[ID]
        return X, keras.utils.to_categorical(y, num_classes=self.n_classes)

    def load_data(self, ID):
        # Implement your data loading logic here
        # For example, loading an image from a file
        return np.load('data/' + str(ID) + '.npy')

# Example usage
list_IDs = np.arange(1000)
labels = np.random.randint(0, 10, size=1000)
data_gen = CustomDataGenerator(list_IDs, labels, batch_size=32)

# Use this generator in your model.fit()
model.fit(data_gen, epochs=10)

常见问题及解决方法

  1. 数据加载速度慢
    • 原因:数据加载或预处理逻辑复杂。
    • 解决方法:优化数据加载逻辑,使用多线程(Keras的Sequence类支持多线程)。
  • 内存溢出
    • 原因:数据批次过大或数据预处理占用过多内存。
    • 解决方法:减小批次大小,优化数据预处理步骤。
  • 数据不平衡
    • 原因:某些类别的样本数量过少。
    • 解决方法:使用数据增强技术,或者在生成器中实现类别平衡策略。

通过以上方法,你可以有效地创建和使用自定义数据生成器来处理大型数据集,并解决常见的相关问题。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

keras中的数据集

数据在深度学习中的重要性怎么说都不为过,无论是训练模型,还是性能调优,都离不开大量的数据。有人曾经断言中美在人工智能领域的竞赛,中国将胜出,其依据就是中国拥有更多的数据。...除了自行搜集数据,还有一条捷径就是获得公开的数据集,这些数据集往往是研究机构或大公司出于研究的目的而创建的,提供免费下载,可以很好的弥补个人开发者和小型创业公司数据不足的问题。...不过由于这些数据集由不同的组织创建,其格式也各不相同,往往需要针对不同的数据集编写解析代码。 keras作为一个高层次的深度学习框架,提供了友好的用户接口,其内置了一些公共数据集的支持。...我将这些数据收集起来放到了百度网盘 https://pan.baidu.com/s/1sUV6oQ7mUplTCoXKulA9Sw,有需要的朋友可以自行下载,将下载的数据文件放到 ~/.keras/datasets...出于方便起见,单词根据数据集中的总体词频进行索引,这样整数“3”就是数据中第3个最频繁的单词的编码。

1.8K30

Pytorch创建自己的数据集

1.用于分类的数据集 以mnist数据集为例 这里的mnist数据集并不是torchvision里面的,而是我自己的以图片格式保存的数据集,因为我在测试STN时,希望自己再把这些手写体做一些形变, 所以就先把...首先我们看一下我的数据集的情况: ? 如图所示,我的图片数据集确实是jpg图片 再看我的存储图片名和label信息的文本: ?...如图所示,我的mnist.txt文本每一行分为两部分,第一部分是具体路径+图片名.jpg 第二部分就是label信息,因为前面这部分图片都是0 ,所以他们的分类的label信息就是0 要创建你自己的 用于分类的...len(self.imgs) #根据自己定义的那个勒MyDataset来创建数据集!...里面装的东西,就是我在__getitem__方法最后return回来的, 所以你想在训练或者测试的时候还得到其他信息的话,就去增加一些返回值即可,只要是能return出来的,就能在每个batch中读取到

3.5K10
  • 在PyTorch中构建高效的自定义数据集

    我特别喜欢的一项功能是能够轻松地创建一个自定义的Dataset对象,然后可以与内置的DataLoader一起在训练模型时提供数据。...DataLoader充当Dataset对象的数据馈送器(feeder)。如果您熟悉的话,这个对象跟Keras中的flow数据生成器函数很类似。...通过使用内置函数轻松拆分自定义PyTorch数据集来创建验证集。 事实上,您可以在任意间隔进行拆分,这对于折叠交叉验证集非常有用。我对这个方法唯一的不满是你不能定义百分比分割,这很烦人。...我认为PyTorch开发的易用性根深蒂固于他们的开发理念,并且在我的工作中使用PyTorch之后,我从此不再回头使用Keras和TensorFlow。...您可以在我的GitHub上找到TES数据集的代码,在该代码中,我创建了与数据集同步的PyTorch中的LSTM名称预测变量(https://github.com/syaffers/tes-names-rnn

    3.6K20

    keras版Mask-RCNN来训练自己的目标检测数据集

    一、运行环境的安装: 1、下载好cuda9跟cudnn7,然后在安装好后,cuda其会自动添加到环境变量里,所以使用keras进行GPU加速的时候会自动使用这些库。...3、然后就安装keras就可以了。使用指令 pip install keras 接着就是安装那个labelme打标工具。...假如你要标注的对象为人和狗,在画掩码过程中,一幅图像中如果有多个person、dog,命名规则为person、person…… dog、dog……。...数据集 获取: 关注微信公众号 datayx 然后回复 mask 即可获取。 AI项目体验地址 https://loveai.tech 6、把打标后的jison文件转换为对应的五个文件。...修改为自己的类别顺序 b、在类ShapeConfig()里的 ? ? ? 到此就可以测试自己训练的模型结果了。 9、最后的测试结果如下: ?

    1.4K20

    iOS中在系统相册中创建自己App的自定义相册

    https://blog.csdn.net/u010105969/article/details/53412473 思路:要创建自己App的自定义相册,首先要获取系统中的所有自定义相册,看这些自定义相册中是否已经包含了我们自己要创建的自定义相册...注意:iOS中在创建自定义相册之后并不会给我们返回一个相册的对象,还需要我们自己根据一个标识去系统中获取我们创建的自定义相册。...代码: // 创建自己要创建的自定义相册 - (PHAssetCollection * )createCollection{ // 创建一个新的相册 // 查看所有的自定义相册 // 先查看是否有自己要创建的自定义相册...// 如果没有自己要创建的自定义相册那么我们就进行创建 NSString * title = [NSBundle mainBundle].infoDictionary[(NSString *)...// 创建自己要创建的相册 NSError * error1 = nil; __block NSString * createCollectionID = nil;         [[

    2.3K10

    nuScenes数据集在OpenPCDet中的使用及其获取

    下载数据 从官方网站上下载数据NuScenes 3D object detection dataset,没注册的需要注册后下载。...注意: 如果觉得数据下载或者创建data infos有难度的,可以参考本文下方 5. 3. 数据组织结构 下载好数据集后按照文件结构解压放置。...其在OpenPCDet中的数据结构及其位置如下,根据自己使用的数据是v1.0-trainval,还是v1.0-mini来修改。...创建data infos 根据数据选择 python -m pcdet.datasets.nuscenes.nuscenes_dataset --func create_nuscenes_infos \...数据获取新途径 如果觉得数据下载或者创建data infos有难度的,可以考虑使用本人处理好的数据 v1.0-mini v1.0-trainval 数据待更新… 其主要存放的结构为 │── v1.0

    5.5K10

    在C#下使用TensorFlow.NET训练自己的数据集

    今天,我结合代码来详细介绍如何使用 SciSharp STACK 的 TensorFlow.NET 来训练CNN模型,该模型主要实现 图像的分类 ,可以直接移植该代码在 CPU 或 GPU 下使用,并针对你们自己本地的图像数据集进行训练和推理...实际使用中,如果你们需要训练自己的图像,只需要把训练的文件夹按照规定的顺序替换成你们自己的图片即可。...具体每一层的Shape参考下图: 数据集说明 为了模型测试的训练速度考虑,图像数据集主要节选了一小部分的OCR字符(X、Y、Z),数据集的特征如下: · 分类数量:3 classes 【X...我们在会话中运行多个线程,并加入队列管理器进行线程间的文件入队出队操作,并限制队列容量,主线程可以利用队列中的数据进行训练,另一个线程进行本地文件的IO读取,这样可以实现数据的读取和模型的训练是异步的,...完整代码可以直接用于大家自己的数据集进行训练,已经在工业现场经过大量测试,可以在GPU或CPU环境下运行,只需要更换tensorflow.dll文件即可实现训练环境的切换。

    1.5K20

    Pytorch打怪路(三)Pytorch创建自己的数据集2

    前面一篇写创建数据集的博文--- Pytorch创建自己的数据集1 是介绍的应用于图像分类任务的数据集,即输入为一个图像和它的类别数字标签,本篇介绍输入的标签label亦为图像的数据集,并包含一些常用的处理手段...1、数据集简介 以VOC2012数据集为例,图像是RGB3通道的,label是1通道的,(其实label原来是几通道的无所谓,只要读取的时候转化成灰度图就行)。 训练数据: ? 语义label: ?...这不是重点,只是给大家看一下方便理解而已, 2、文本信息 同样有一个文本来指导我对数据的读取,我的信息如下 ?...这其实就是一个记载了图像ID的文本文档,连后缀都没有,但我们依然可以根据这个去数据集中读取相应的image和label 3、代码示例 这个代码是我自己在利用deeplabV2 跑semantic segmentation...,虽然有点长, 因为实现了crop和翻转以及scale等功能,但是大家可以下去慢慢揣摩,理解其中的主要思路,与我前一篇的博文Pytorch创建自己的数据集1做对比,那篇博文相当于是提供了最基本的骨架,而这篇就在骨架上长肉生发而已

    98110

    使用Google的Quickdraw创建MNIST样式数据集!

    数字如下所示: 它经久不衰的主要原因是缺乏替代品。在这篇文章中,我想介绍另一种方法,就是Google的QuickDraw数据集。...图纸如下所示: 构建您自己的QuickDraw数据集 我想了解您如何使用这些图纸并创建自己的MNIST数据集。...这是一个简短的python gist ,我用来阅读.npy文件并将它们组合起来创建一个可以用来替代MNIST的含有80,000个图像的数据集。...它们以hdf5格式保存,这种格式是跨平台的,经常用于深度学习。 用QuickDraw代替MNIST 我使用这个数据集代替MNIST。...在Keras 教程中,使用Python中的自动编码器进行一些工作。下图显示了顶部的原始图像,并使用自动编码器在底部显示重建的图像。 接下来我使用了一个R语言的变分自编码器的数据集。

    1.7K80

    Pytorch加载自己的数据集(使用DataLoader读取Dataset)

    大家好,又见面了,我是你们的朋友全栈君。 1. 我们经常可以看到Pytorch加载数据集会用到官方整理好的数据集。...很多时候我们需要加载自己的数据集,这时候我们需要使用Dataset和DataLoader Dataset:是被封装进DataLoader里,实现该方法封装自己的数据和标签。...2.Dataset 阅读源码后,我们可以指导,继承该方法必须实现两个方法: _getitem_() _len_() 因此,在实现过程中我们测试如下: import torch import numpy...进行丢弃 n u m _ w o r k e r s \color{HotPink}{num\_workers} num_workers:表示加载的时候子进程数 因此,在实现过程中我们测试如下(紧跟上述用例...=True, drop_last=False, num_workers=2) 此时,我们的数据已经加载完毕了,只需要在训练过程中使用即可。

    2.3K40

    PyTorch 中自定义数据集的读取方法

    显然我们在学习深度学习时,不能只局限于通过使用官方提供的MNSIT、CIFAR-10、CIFAR-100这样的数据集,很多时候我们还是需要根据自己遇到的实际问题自己去搜集数据,然后制作数据集(收集数据集的方法有很多...这里只介绍数据集的读取。 1....自定义数据集的方法: 首先创建一个Dataset类 [在这里插入图片描述] 在代码中: def init() 一些初始化的过程写在这个函数下 def...,下面是完整的代码,代码的解释说明我也已经写在其中了# -*- coding: utf-8 -*- # @Author : 胡子旋 # @Email :1017190168@qq.com import...mode=='train': self.images=self.images[:int(0.6*len(self.images))] # 将数据集的60%设置为训练数据集合

    93330

    在您现有的向量数据库中使用LLM中您自己的数据

    您甚至可以询问 LLM 在其答案中添加对它使用的原始数据的引用,以便您自己检查。毫无疑问,供应商已经推出了专有的向量数据库解决方案,并将其宣传为“魔杖”,可以帮助您消除任何 AI 幻觉的担忧。...如果您已经在使用Apache Cassandra 5.0、OpenSearch 或PostgreSQL,那么您的向量数据库成功已经准备就绪。没错:无需昂贵的专有向量数据库产品。...向量数据库存储嵌入向量,嵌入向量是表示与数据片段相对应的空间坐标的数字列表。相关数据将具有更接近的坐标,允许 LLM 理解复杂和非结构化数据集,以实现生成式 AI 响应和搜索功能等功能。...RAG 是一种越来越受欢迎的过程,它涉及使用向量数据库将企业文档中的单词转换为嵌入,以便通过 LLM 对这些文档进行高效且准确的查询。...OpenSearch 提供多种优势 与 Cassandra 一样,OpenSearch 是另一种非常流行的开源解决方案,许多寻找向量数据库的人恰好已经在使用它。

    15610

    2018-12-07使用 DIGITS训练自己的数据集

    手把手教你用英伟达 DIGITS 解决图像分类问题 DIGITS的安装与使用记录 DIGITS创建并导入自己的图片分类数据集(其他数据集类似) 如何在 GPU 深度学习云服务里,使用自己的数据集?...AWS S3 URL Styles 简单方便使用和管理对象存储服务---s3cmd 华为云对象存储竟然能无缝支持 Owncloud 一、digists安装 DIGITS Ubuntu deb 安装命令...deb包安装的童鞋,在浏览器地址栏输入 http://localhost/ 访问 DIGITS server 主页 ?...安装好的digits 二、使用 使用 DIGITS 提供的数据集下载工具直接下载解压数据,数据会被下载到你指定的目录下(DataSets在家目录Gameboy下先建好),终端下: mkdir DataSets...数据集路径:绝对路径从/开始 ? 数据集名称

    1.2K30

    使用Python在自定义数据集上训练YOLO进行目标检测

    此外,我们还将看到如何在自定义数据集上训练它,以便你可以将其适应你的数据。 Darknet 我们认为没有比你可以在他们的网站链接中找到的定义更好地描述Darknet了。...所以我们要做的就是学习如何使用这个开源项目。 你可以在GitHub上找到darknet的代码。看一看,因为我们将使用它来在自定义数据集上训练YOLO。...pip install -q torch_snippets 下载数据集 我们将使用一个包含卡车和公共汽车图像的目标检测数据集。Kaggle上有许多目标检测数据集,你可以从那里下载一个。...如果你不知道如何在Colab中直接从Kaggle下载数据集,你可以去阅读一些我以前的文章。 所以下载并解压数据集。 !wget - quiet link_to_dataset !...,以便在自定义数据集上进行训练。

    45410

    在MNIST数据集上使用Pytorch中的Autoencoder进行维度操作

    这将有助于更好地理解并帮助在将来为任何ML问题建立直觉。 ? 首先构建一个简单的自动编码器来压缩MNIST数据集。使用自动编码器,通过编码器传递输入数据,该编码器对输入进行压缩表示。...然后该表示通过解码器以重建输入数据。通常,编码器和解码器将使用神经网络构建,然后在示例数据上进行训练。 但这些编码器和解码器到底是什么? ?...用于数据加载的子进程数 每批加载多少个样品 准备数据加载器,现在如果自己想要尝试自动编码器的数据集,则需要创建一个特定于此目的的数据加载器。...此外,来自此数据集的图像已经标准化,使得值介于0和1之间。 由于图像在0和1之间归一化,我们需要在输出层上使用sigmoid激活来获得与此输入值范围匹配的值。...由于要比较输入和输出图像中的像素值,因此使用适用于回归任务的损失将是最有益的。回归就是比较数量而不是概率值。

    3.5K20

    在tensorflow2.2中使用Keras自定义模型的指标度量

    当考虑一个多类问题时,人们常说,如果类是不平衡的,那么准确性就不是一个好的度量标准。虽然这是肯定的,但是当所有的类训练的不完全拟合时,即使数据集是平衡的,准确性也是一个糟糕的度量标准。...在本文中,我将使用Fashion MNIST来进行说明。然而,这并不是本文的唯一目标,因为这可以通过在训练结束时简单地在验证集上绘制混淆矩阵来实现。...在训练中获得班级特定的召回、精度和f1至少对两件事有用: 我们可以看到训练是否稳定,每个类的损失在图表中显示的时候没有跳跃太多 我们可以使用一些技巧-早期停止甚至动态改变类权值。...还有一个关联predict_step,我们在这里没有使用它,但它的工作原理是一样的。 我们首先创建一个自定义度量类。...由于tensorflow 2.2,可以透明地修改每个训练步骤中的工作(例如,在一个小批量中进行的训练),而以前必须编写一个在自定义训练循环中调用的无限函数,并且必须注意用tf.功能启用自动签名。

    2.5K10
    领券