特征转化: TF-IDF:词频,逆文档频率是一种用来从文本文档中生成特征向量的简单方法。...它为文档中的每个词计算两个统计值:一个是词频(TF),也就是每个词在文档中出现的次数,另一个是逆文档频率(IDF),用来衡量一个词语特定文档的相关度。...HashingTF使用每个单词对所需向量的长度S取模得出的哈希值,把所有单词映射到一个0到S-1之间的数字上。由此可以保证生成一个S维的向量。...MLlib统计 1、Statistics.colStats(rdd) 计算由向量组成的RDD的统计性综述,保存着向量集合中每列的最大值、最小值、平均值和方差。...2、statistics.corr(rdd,method_ 计算由向量组成的RDD中的列间的相关矩阵,使用皮卡森相关或斯皮尔曼相关中的一种。
RDD Ⅱ·从对象文件创建RDD B 从数据源创建RDD C.通过编程创建RDD 3.RDD操作 4.RDD持久化与重用 5.RDD谱系 6.窄依赖(窄操作)- 宽依赖(宽操作): 7.RDD容错性 8...RDD的另一个关键特性是不可变,也即是在实例化出来导入数据后,就无法更新了。...初始RDD的创建方法: A 从文件中读取数据; B 从SQL或者NoSQL等数据源读取 C 通过编程加载数据 D 从流数据中读取数据。...Ⅱ·从对象文件创建RDD 对象文件指序列化后的数据结构,有几个方法可以读取相应的对象文件: hadoopFile(), sequenceFile(), pickleFile() B 从数据源创建RDD...参数numSlices指定了所需创建的分区数量。
窄依赖就是父RDD的分区可以一一对应到子RDD的分区,宽依赖就是父RDD的每个分区可以被多个子RDD的 分区使用。 ?...转换(Transformation) 转换是用来把一个RDD转换成另一个RDD Map 它把一个RDD中的所有数据通过一个函数,映射成一个新的RDD,任何原 RDD中的元素在新RDD中都有且只有一个元素与之对应...1)] Filter filter这个操作,是选择原RDD里所有数据中满足某个特定条件的数据,去返回一个新的RDD。...所以持久化的RDD有自动的容错机制。如果RDD 的任一分区丢失了,通过使用原先创建它的转换操作,它将会被自动重算。 持久化可以选择不同的存储级别。...每个时间间隔它都会读取最新的输入,进 行处理,更新输出表,然后把这次的输入删除。Structured Streaming只会存储更新输出表所需要的信息。
(func):与map类似,但每个输入项都可以映射到多个输出项,返回一个扁平化的新RDDunion(otherDataset):将一个RDD与另一个RDD进行合并,返回一个包含两个RDD元素的新RDDdistinct...可以通过读取文件、从RDD转换等方式来创建一个DataFrame。在DataFrame上执行WHERE查询以进行筛选和过滤。分组、聚合:groupBy()和agg()。...DataFrame创建DataFrame:可以使用SparkContext上的createDataFrames方法将一个已知的RDD映射为一个DataFrame。...可以使用read方法 从外部数据源中加载数据或直接使用Spark SQL的内置函数创建新的DataFrame。创建DataFrame后,需要定义列名、列类型等元信息。...选择和过滤:使用select()方法来选择特定列或重命名列。使用where()和filter()方法来过滤数据。
上同样是可以使用的。...RDD进行转换;还可以从Hive Table进行查询返回。...hadoop fs -put /opt/data/people.json /input ok~ 1) 从Spark数据源进行创建 (1) 查看Spark数据源进行创建的文件格式, spark.read...中转换 参照第2.5节的内容:DateFrame 转换为RDD 3) 从Hive Table进行查询返回 这个将在后面的博文中涉及到,这里暂且不谈。...(了解) 导入所需的类型 scala> import org.apache.spark.sql.types._ import org.apache.spark.sql.types._ 创建Schema
sc.makeRDD(1 to 1000,5) 可通过算子来进行修改分区数.repartition(3) 如果使用的是scala集合的话,在特定的格式下,会根据数量量来创建分区makeRdd 读取HDFS...窄依赖:指父RDD的每一个分区最多被一个子RDD的分区所用。 宽依赖:指子RDD的分区依赖于父RDD的所有分区。...在Spark中有两类task,一类是shuffleMapTask,一类是resultTask,第一类task的输出是shuffle所需数据,第二类task的输出是result,stage的划分也以此为依据...,shuffle之前的所有变换是一个stage,shuffle之后的操作是另一个stage。...,执行shuffleMapTask,输出shuffle所需的数据,reduceByKey到最后是一个stage,直接就输出结果了。
transformation的结果是从一个RDD转换到另一个RDD,而action则是从一个RDD转换到一个非RDD,因此从执行结果是否仍然是RDD也可推断出该操作是transformation抑或action...03 RDD创建 RDD的创建主要有3类形式: 从Python中的其他数据结构创建,用到的方法为parallelize(),接收一个本地Python集合对象,返回一个RDD对象,一般适用于较小的数据集...从本地或HDFS文件中创建RDD对象,适用于大数据集,也是生产部署中较为常用的方式 从一个已有RDD中生成另一个RDD,所有transformation类算子其实都是执行这一过程 from pyspark...(['Tom', 'John', 'Joy']) # 从本地已有Python集合创建 rdd2 = sc.textFile('test.txt') # 从本地文件序列化一个RDD rdd3 = rdd1...至于说转换过程中仍然可以使用相同的变量名,这是由Python的特性所决定的,类似于字符串是不可变数据类型,但也可以由一个字符串生成另一个同名字符串一样。
② 通过编程借口与 RDD 进行交互获取 Schema,并动态创建 DataFrame,在运行时决定列及其类型。...DataFrame 中的数据结构信息,即为 Scheme ① 通过反射获取 RDD 内的 Scheme (使用条件)已知类的 Schema,使用这种基于反射的方法会让代码更加简洁而且效果也更好。...在 Scala 中,使用 case class 类型导入 RDD 并转换为 DataFrame,通过 case class 创建 Schema,case class 的参数名称会被利用反射机制作为列名。...这种方法的好处是,在运行时才知道数据的列以及列的类型的情况下,可以动态生成 Schema。...可以通过以下三步创建 DataFrame: 第一步将 RDD 转为包含 row 对象的 RDD 第二步基于 structType 类型创建 Schema,与第一步创建的 RDD 想匹配 第三步通过 SQLContext
与RDD进行互操作 Spark SQL支持两种不同方法将现有RDD转换为Datasets。第一种方法使用反射来推断包含特定类型对象的RDD的schema。...第二种创建Datasets的方法是通过编程接口,允许您构建schema,然后将其应用于现有的RDD。虽然此方法更详细,但它允许你在直到运行时才知道列及其类型的情况下去构件数据集。...使用反射读取case class的参数名称,并将其变为列的名称。Case class也可以嵌套或包含复杂类型,如Seqs或Arrays。此RDD可以隐式转换为DataFrame,然后将其注册为表格。...1, Row从原始RDD 创建元素类型为Row的RDD; 2,使用StructType创建一组schema,然后让其匹配步骤1中Rows的类型结构。...3,使用SparkSession 提供的方法createDataFrame,将schema应用于Rows 类型的RDD。
当我们使用 spark-shell 的时候, spark 会自动的创建一个叫做spark的SparkSession, 就像我们以前可以自动获取到一个sc来表示SparkContext ? 二....DataFrame的转换从本质上来说更具有关系, 而 DataSet API 提供了更加函数式的 API 2.1 创建 DataFrame With a SparkSession, applications...查询name和age + 1 // 设计到运算的时候, 每列都必须使用$ scala> df.select($"name", $"age" + 1).show +-------+---------+ |...从 RDD 到 DataFrame 涉及到RDD, DataFrame, DataSet之间的操作时, 需要导入:import spark.implicits._ 这里的spark不是包名, 而是表示...从 DataFrame到RDD 直接调用DataFrame的rdd方法就完成了从转换. scala> val df = spark.read.json("/opt/module/spark-local/
RDD API 用户使用SparkR RDD API在R中创建RDD,并在RDD上执行各种操作。...目前SparkR RDD实现了Scala RDD API中的大部分方法,可以满足大多数情况下的使用需求: SparkR支持的创建RDD的方式有: 从R list或vector创建RDD(parallelize...()) 从文本文件创建RDD(textFile()) 从object文件载入RDD(objectFile()) SparkR支持的RDD的操作有: 数据缓存,持久化控制:cache(),persist...目前SparkR的DataFrame API已经比较完善,支持的创建DataFrame的方式有: 从R原生data.frame和list创建 从SparkR RDD创建 从特定的数据源(JSON和Parquet...格式的文件)创建 从通用的数据源创建 将指定位置的数据源保存为外部SQL表,并返回相应的DataFrame 从Spark SQL表创建 从一个SQL查询的结果创建 支持的主要的DataFrame操作有:
DataFrame与RDD的主要区别在于,DataFrame带有schema元信息,即DataFrame所表示的二维表数据集的每一列都带有名称和类型。 Spark SQL性能上比RDD要高。...当我们使用spark-shell的时候,Spark框架会自动的创建一个名称叫做Spark的SparkSession,就像我们以前可以自动获取到一个sc来表示SparkContext。...2.2 SQL 语法 SQL语法风格是指我们查询数据的时候使用SQL语句来查询,这种风格的查询必须要有临时视图或者全局视图来辅助。 视图:对特定表的数据的查询结果重复使用。...(domain-specific language,DSL)去管理结构化的数据,可以在Scala,Java,Python和R中使用DSL,使用DSL语法风格不必去创建临时视图了。...df.select("*").show() // 查看“name”列数据以及“age+1”数据 // 涉及到运算的时候,每列都必须使用$,或者采用单引号表达式:单引号+字段名 df.select
创建Pair RDD Pair RDD就是元素为二元组(tuple)的RDD。...如果其中的一个 RDD 对于另一个 RDD 中存在的某个键没有对应的记录,那么对应的迭代器则为空。cogroup() 提供了为多个 RDD 进行数据分组的方法。...然后通过对第一个 RDD 进行哈希分区,创建出了第二个 RDD。 (2)从分区中获益的操作 Spark 的许多操作都引入了将数据根据键跨节点进行混洗的过程。...如果两个 RDD 使用同样的分区方式,并且它们还缓存在同样的机器上(比如一个 RDD 是通过 mapValues() 从另一个 RDD 中创建出来的,这两个RDD 就会拥有相同的键和分区方式),或者其中一个...如果你想要对多个 RDD 使用相同的分区方式,就应该使用同一个函数对象,比如一个全局函数,而不是为每个 RDD 创建一个新的函数对象。
需要反复操作的次数越多,所需读取的数据量越大,受益越大,数据量小但是计算密集度较大的场合,受益就相对较小 由于RDD的特性,Spark不适用那种异步细粒度更新状态的应用,例如web服务的存储或者是增量的...通过配置Shark参数,Shark可以自动在内存中缓存特定的RDD,实现数据重用,进而加快特定数据集的检索。...同时,Shark通过UDF用户自定义函数实现特定的数据分析学习算法,使得SQL数据查询和运算分析能结合在一起,最大化RDD的重复使用。...RDD的生成 RDD有两种创建方式: 1、从Hadoop文件系统(或与Hadoop兼容的其它存储系统)输入(例如HDFS)创建。 2、从父RDD转换得到新RDD。...写SparK程序的一般步骤就是创建或使用(SparkContext)实例,使用SparkContext创建RDD,然后就是对RDD进行操作。
而另一种解释是RDD是由虚拟数据结构组成,并不包含真实数据本体,RDD使用了一种“血统”的容错机制,当数据发生丢失时,可以同时父节点计算复原。 在结构更新和丢失后可随时根据血统进行数据模型的重建。...,RddID,创建抽样,累加器,广播变量等信息。...窄依赖与宽依赖 窄依赖:父RDD中,每个分区内的数据,都只会被子RDD中特定的分区所消费,为窄依赖:例如map、filter、union等操作会产生窄依赖 宽依赖:父RDD中,分区内的数据,会被子RDD...RDD的partition仅仅和另一个RDD中已知个数的Partition进行join,那么这种类型的join操作就是窄依赖,例如图1中左半部分的join操作(join with inputsco-partitioned...Spark算子非常丰富,有几十个,开发者把算子组合使用,从一个基础的RDD计算出想要的结果。 ?
3、创建数据框架 一个DataFrame可被认为是一个每列有标题的分布式列表集合,与关系数据库的一个表格类似。...3.1、从Spark数据源开始 DataFrame可以通过读txt,csv,json和parquet文件格式来创建。...“THE”的判断结果集 5.4、“startswith”-“endswith” StartsWith指定从括号中特定的单词/内容的位置开始扫描。...使用repartition(self,numPartitions)可以实现分区增加,这使得新的RDD获得相同/更高的分区数。...通过使用.rdd操作,一个数据框架可被转换为RDD,也可以把Spark Dataframe转换为RDD和Pandas格式的字符串同样可行。
02 RDD创建 在Pyspark中我们可以通过两种方式来进行RDD的创建,RDD是一种无schema的数据结构,所以我们几乎可以混合使用任何类型的数据结构:tuple、dict、list都可以使用。...parallelize() 直接使用数据容器创建RDD。...data_2020 = data_from_file_conv.map(lambda row: int(row[16])) filter() 从数据集中选择元素,该元素符合特定的标准。...rdd5.collect() reduce() 使用指定的方法减少RDD中的元素。...data_key.saveAsTextFile('xxx') foreach() 对RDD中的每个元素,使用迭代的方式应用相同的函数。
Spark SQL 支持两种不同的方法将现有 RDD 转换为 Datasets。 第一种方法使用反射来推断包含特定类型对象的 RDD 的 schema。...第二种方法是通过编程接口来创建 DataSet,这种方法允许构建一个 schema,并将其应用到现有的 RDD 上。虽然这种方法更详细,但直到运行时才知道列及其类型,才能构造 DataSets。...使用反射推导schema Spark SQL 支持自动将 JavaBeans 的 RDD 转换为 DataFrame。使用反射获取的 BeanInfo 定义了表的 schema。...使用编程方式指定Schema 当 JavaBean 类不能提前定义时(例如,记录的结构以字符串编码,或者解析文本数据集,不同用户字段映射方式不同),可以通过编程方式创建 DataSet,有如下三个步骤:...从原始 RDD(例如,JavaRDD)创建 Rows 的 RDD(JavaRDD); 创建由 StructType 表示的 schema,与步骤1中创建的 RDD 中的 Rows 结构相匹配。
RDD API 用户使用SparkR RDD API在R中创建RDD,并在RDD上执行各种操作。...目前SparkR RDD实现了Scala RDD API中的大部分方法,可以满足大多数情况下的使用需求: SparkR支持的创建RDD的方式有: 从R list或vector创建RDD(parallelize...()) 从文本文件创建RDD(textFile()) 从object文件载入RDD(objectFile()) SparkR支持的RDD的操作有: 数据缓存,持久化控制:cache(),persist(...目前SparkR的DataFrame API已经比较完善,支持的创建DataFrame的方式有: 从R原生data.frame和list创建 从SparkR RDD创建 从特定的数据源(JSON和Parquet...格式的文件)创建 从通用的数据源创建 将指定位置的数据源保存为外部SQL表,并返回相应的DataFrame 从Spark SQL表创建 从一个SQL查询的结果创建 支持的主要的DataFrame操作有:
分区依照特定规则将具有相同属性的数据记录放在一起,每个分区相当于一个数据集片段。 RDD 内部结构 ? 图 1 图 1 所示是 RDD 的内部结构图,它是一个只读、有属性的数据集。.../ RDD 的创建方式与分区机制 / RDD 的创建方式 RDD 的创建方式有四种: 1.使用程序中的集合创建 RDD,RDD 的数据源是程序中的集合,通过 parallelize 或者 makeRDD...HDFS 的数据,使用 textFile 方法创建RDD。...*例 val rdd = sc.textFile(“hdfs://master:9000/rec/data”) 3.使用数据流创建 RDD,使用 Spark Streaming 的相关类,接收实时的输入数据流创建...RDD,从其他数据库上创建 RDD,例如 Hbase、MySQL 等。
领取专属 10元无门槛券
手把手带您无忧上云