首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

Excel与pandas:使用applymap()创建复杂的计算列

标签:Python与Excel,pandas 我们之前讨论了如何在pandas中创建计算列,并讲解了一些简单的示例。...通过将表达式赋值给一个新列(例如df['new column']=expression),可以在大多数情况下轻松创建计算列。然而,有时我们需要创建相当复杂的计算列,这就是本文要讲解的内容。...记住,我们永远不应该循环遍历pandas数据框架/系列,因为如果我们有一个大的数据集,这样做效率很低。...pandas applymap()方法 pandas提供了一种将自定义函数应用于列或整个数据框架的简单方法,就是.applymap()方法,这有点类似于map()函数的作用。...图3 我们仍然可以使用map()函数来转换分数等级,但是,需要在三列中的每一列上分别使用map(),而applymap()能够覆盖整个数据框架(多列)。

3.9K10

Pandas库的基础使用系列---获取行和列

前言我们上篇文章简单的介绍了如何获取行和列的数据,今天我们一起来看看两个如何结合起来用。获取指定行和指定列的数据我们依然使用之前的数据。...我们先看看如何通过切片的方法获取指定列的所有行的数据info = df.loc[:, ["2021年", "2017年"]]我们注意到,行的位置我们使用类似python中的切片语法。...我们试试看如何将最后一列也包含进来。info = df.iloc[:, [1, 4, -1]]可以看到也获取到了,但是值得注意的是,如果我们使用了-1,那么就不能用loc而是要用iloc。...大家还记得它们的区别吗?可以看看上一篇文章的内容。同样我们可以利用切片方法获取类似前4列这样的数据df.iloc[:, :4]由于我们没有指定行名称,所有指标这一列也计算在内了。...如果要使用索引的方式,要使用下面这段代码df.iloc[2, 2]是不是很简单,接下来我们再看看如何获取多行多列。为了更好的的演示,咱们这次指定索引列df = pd.read_excel("..

63700
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    使用Pandas完成data列数据处理,按照数据列中元素出现的先后顺序进行分组排列

    一、前言 前几天在Python钻石交流群【瑜亮老师】给大家出了一道Pandas数据处理题目,使用Pandas完成下面的数据操作:把data列中的元素,按照它们出现的先后顺序进行分组排列,结果如new列中展示...new列为data列分组排序后的结果 print(df) 结果如下图所示: 二、实现过程 方法一 这里【猫药师Kelly】给出了一个解答,代码和结果如下图所示。...(*([k]*v for k, v in Counter(df['data']).items()))] print(df) 运行之后,结果如下图所示: 方法四 这里【月神】给出了三个方法,下面展示的这个方法和上面两个方法的思路是一样的...这篇文章主要盘点了使用Pandas完成data列数据处理,按照数据列中元素出现的先后顺序进行分组排列的问题,文中针对该问题给出了具体的解析和代码演示,一共6个方法,欢迎一起学习交流,我相信还有其他方法,...【月神】和【瑜亮老师】太强了,这个里边东西还是很多的,可以学习很多。

    2.3K10

    盘点使用Pandas解决问题:对比两列数据取最大值的5个方法

    一、前言 前几天在Python星耀交流群有个叫【iLost】的粉丝问了一个关于使用pandas解决两列数据对比的问题,这里拿出来给大家分享下,一起学习。...大概意思是说在DF中有2列数据,想每行取两列数据中的最大值,形成一个新列,该怎么写?最开始【iLost】自己使用了循环的方法写出了代码,当然是可行的,但是写的就比较难受了。...二、解决过程 这里给出5个方法,感谢大佬们的解答,一起来看看吧! 方法一:【月神】解答 其实这个题目的逻辑和思路也相对简单,但是对于Pandas不熟悉的小伙伴,接受起来就有点难了。...使用numpy结合pandas,代码如下: df['max4'] = np.where(df['cell1'] > df['cell2'],df['cell1'], df['cell2']) df...这篇文章基于粉丝提问,针对df中,想在每行取两列数据中的最大值,作为新的一列问题,给出了具体说明和演示,一共5个方法,顺利地帮助粉丝解决了问题,也帮助大家玩转Pandas,学习Python相关知识。

    4.3K30

    Python数据分析之数据预处理(数据清洗、数据合并、数据重塑、数据转换)学习笔记

    一般空值使用None表示,缺失值使用NaN表示  1.1.1 使用isnull()和notnull()函数  ​ 可以判断数据集中是否存在空值和缺失值  1.1.1.1 isnull()语法格式:  pandas.... isnull(obj)  1.1.1.2 notnull()语法格式:  pandas . notnull(obj)  ​ notnull()与 isnull()函数的功能是一样的,都可以判断数据中是否存在空值或缺失值...astype()方法存在着一些局限性,只要待转换的数据中存在非数字以外的字符,在使用 astype()方法进行类型转换时就会出现错误,而to_numeric()函数的出现正好解决了这个问题。 ...columns:用于创建新 DataFrame对象的列索引 values:用于填充新 DataFrame对象中的值。  4....4.1.1 rename()方法  index,columns:表示对行索引名或列索引名的转换。  inplace:默认为False,表示是否返回新的Pandas对象。

    5.5K00

    直观地解释和可视化每个复杂的DataFrame操作

    每种方法都将包括说明,可视化,代码以及记住它的技巧。 Pivot 透视表将创建一个新的“透视表”,该透视表将数据中的现有列投影为新表的元素,包括索引,列和值。...Unstack 取消堆叠将获取多索引DataFrame并对其进行堆叠,将指定级别的索引转换为具有相应值的新DataFrame的列。在表上调用堆栈后再调用堆栈不会更改该堆栈(原因是存在“ 0 ”)。...可以按照与堆叠相同的方式执行堆叠,但是要使用level参数: df.unstack(level = -1)。 Merge 合并两个DataFrame是在共享的“键”之间按列(水平)组合它们。...包括df2的所有元素, 仅当其键是df2的键时才 包含df1的元素 。 “outer”:包括来自DataFrames所有元素,即使密钥不存在于其他的-缺少的元素被标记为NaN的。...“inner”:仅包含元件的键是存在于两个数据帧键(交集)。默认合并。 记住:如果您使用过SQL,则单词“ join”应立即与按列添加相联系。

    13.3K20

    pandas每天一题-题目14:新增列的多种方式

    一个订单会包含很多明细项,表中每个样本(每一行)表示一个明细项 order_id 列存在重复 item_name 是明细项物品名称 quantity 是明细项数量 item_price 是该明细项的总价钱...: 1df['unit_price'] = df['item_price'] / df['quantity'] 2df 点评: 这种方式最大的缺点是修改了原数据 ---- 方式2 简单的表达式,可以使用...eval 进一步简化: 1df.eval('unit_price = item_price/quantity') 注意,方法返回一个新的 DataFrame,而原来的表格(df)并没有改变 点评...存在的列名作为参数,视为覆盖原有列 但是,这种设计有一个缺陷,python 参数名字是有限制,比如参数名字不能有空格。 那么如果列名真的需要有空格怎么办?...Python数据分析包pandas(十二):多列堆叠 懂Excel就能轻松入门Python数据分析包pandas(十一):分段匹配

    67530

    最全面的Pandas的教程!没有之一!

    从现有的列创建新列: ? 从 DataFrame 里删除行/列 想要删除某一行或一列,可以用 .drop() 函数。...清洗数据 删除或填充空值 在许多情况下,如果你用 Pandas 来读取大量数据,往往会发现原始数据中会存在不完整的地方。...当你使用 .dropna() 方法时,就是告诉 Pandas 删除掉存在一个或多个空值的行(或者列)。删除列用的是 .dropna(axis=0) ,删除行用的是 .dropna(axis=1) 。...因为我们没有指定堆叠的方向,Pandas 默认按行的方向堆叠,把每个表的索引按顺序叠加。 如果你想要按列的方向堆叠,那你需要传入 axis=1 参数: ? 注意,这里出现了一大堆空值。...因为我们用来堆叠的3个 DataFrame 里,有许多索引是没有对应数据的。因此,当你使用 pd.concat() 的时候,一定要注意堆叠方向的坐标轴(行或列)含有所需的所有数据。

    26K64

    详解pd.DataFrame中的几种索引变换

    02 reindex和rename 学习pandas之初,reindex和rename容易使人混淆的一组接口,就其具体功能来看: reindex执行的是索引重组操作,接收一组标签序列作为新索引,既适用于行索引也适用于列标签名...,当原DataFrame中存在该索引时则提取相应行或列,否则赋值为空或填充指定值。...注意到原df中行索引为[1, 3, 5],而新重组的目标索引为[1, 2, 3],其中[1, 3]为已有索引直接提取,[2, 4]在原df中不存在,所以填充空值;同时,原df中索引[5]由于不在指定索引中...03 index.map 针对DataFrame中的数据,pandas中提供了一对功能有些相近的接口:map和apply,以及applymap,其中map仅可用于DataFrame中的一列(也即即Series...05 stack与unstack 这也是一对互逆的操作,其中stack原义表示堆叠,实现将所有列标签堆叠到行索引中;unstack即解堆,用于将复合行索引中的一个维度索引平铺到列标签中。

    2.5K20

    数据导入与预处理-课程总结-04~06章

    第6章 数据集成变换规约 3.1 数据集成 3.1.1数据集成需要关注的问题 3.2 基于Pandas实现数据集成 3.2.3 主键合并数据merge 3.2.4 堆叠合并数据concat 3.2.5...2.1.2 删除缺失值 pandas中提供了删除缺失值的方法dropna(),dropna()方法用于删除缺失值所在的一行或一列数据,并返回一个删除缺失值后的新对象。...2.1.3填充缺失值 pandas中提供了填充缺失值的方法fillna(),fillna()方法既可以使用指定的数据填充,也可以使用缺失值前面或后面的数据填充。...3.2.4 堆叠合并数据concat 堆叠合并数据类似于数据库中合并数据表的操作,主要沿着某个轴将多个对象进行拼接。...dropna:表示是否删除结果对象中存在缺失值的一行数据,默认为True。 同时还有一个stack的逆操作,unstack。

    13.1K10

    pandas库的简单介绍(2)

    3、 DataFrame数据结构 DataFrame表示的是矩阵数据表,每一列可以是不同的值类型(数值、字符串、布尔值等)。...[列名]进行移除;增加列有两个方法:1,直接frame[列名]=值;2,frame[列名]=Series对象,如果被赋值的列不存在,会生成一个新列。...不常用的特性感兴趣的可自行探索。 4.1 重建索引 reindex是pandas对象的重要方法,该方法创建一个符合条件的新对象。...如果某个索引值之前并不存在,则会引入缺失值;在这里注意与上一篇文章2.2的区别。 对于顺序数据,例如时间序列,重建索引时可能会需要进行插值或填值。...另外一种重建索引的方式是使用loc方法,可以了解一下: reindex方法的参数表 常见参数 描述 index 新的索引序列(行上) method 插值方式,ffill前向填充,bfill后向填充

    2.4K10

    【机器学习数据预处理】数据准备

    r^2 越接近1,说明两个变量之间的相关性越强; r^2 越接近0,说明两个变量之间几乎不存在直线相关关系。   ...Pandas库的corr()方法可计算出列与列、变量与变量之间的成对相关系数,但不包括空值。...横向堆叠: 纵向堆叠:   横向堆叠即将两个表在X轴向连接到一起,纵向堆叠是将两个数据表在Y轴向上拼接,可以利用Python中Pandas库的concat函数对两个表进行横向或者纵向堆叠,其基本语法格式如下...表示要添加的新数据。无默认 ignore_index 接收bool。如果输入True,会对新生成的DataFrame使用新的索引(自动产生)而忽略原来数据的索引。...表示应用于每行或每列的函数。无默认值 axis 接收0或1。代表操作的轴向。默认为0 3. 使用apply()方法聚合数据 apply()方法类似于agg()方法,能够将函数应用于每一列。

    9810

    Pandas可视化综合指南:手把手从零教你绘制数据图表

    本文经AI新媒体量子位(QbitAI)授权转载,转载请联系出处 数据可视化本来是一个非常复杂的过程,但随着Pandas数据帧plot()函数的出现,使得创建可视化图形变得很容易。...坐标轴的设置 取值范围 使用xlim和ylim两个参数可设置x和y轴的范围。在折线图中,我们要将x轴设置为0到20,y限制为从0到100。...x、y轴刻度 有时候坐标轴上的刻度并不理想,我们希望在上面标上我们喜欢的数值。...但是用列表来制定坐标刻度的方法,在数值太多的时候就比较麻烦了,因此我们还能通过指定刻度间隔的方法来绘制坐标轴,比如指定x轴间隔是1,y轴间隔是10: df[:20][‘Freedom’].plot(kind...其他高阶用法 可以使用stacked参数来绘制带有条形图的堆叠图。在这里,我们绘制堆叠的水平条,stacked设置为True。 ? 将grid参数设置为True,可以给图表加入网格。 ?

    2.6K20

    数据导入与预处理-第6章-01数据集成

    有些冗余可以被相关分析检测到,对于标称属性,使用卡方检验,对于数值属性,可以使用相关系数(correlation coefficient)和 协方差( covariance)评估属性间的相关性。...数据集成之后可能需要经过数据清理,以便清除可能存在的实体识别、冗余属性识别和元组重复问题。pandas中有关数据集成的操作是合并数据,并为该操作提供了丰富的函数或方法。...若设为True,则会在清除结果对象的现有索引后生成一组新的索引。...,且数据中存在缺失值时,可以采用重叠合并的方式组合数据。...重叠合并数据是一种并不常见的操作,它主要将一组数据的空值填充为另一组数据中对应位置的值。pandas中可使用combine_first()方法实现重叠合并数据的操作。

    2.6K20

    因Pandas版本较低,这个API实现不了咋办?

    问题描述:一个pandas dataframe数据结构存在一列是集合类型(即包含多个子元素),需要将每个子元素展开为一行。这一场景运用pandas中的explodeAPI将会非常好用,简单高效。...然而,由于线上部署pandas版本为0.23,而explode API是在0.25以后版本中引入,所以无法使用。为解决这一问题,灵活运用apply+stack可破此难题。 ?...至此,实际上是完成了单列向多列的转换,其中由于每列包含元素个数不同,展开后的长度也不尽一致,pandas会保留最长的长度,并将其余填充为空值(正因为空值的存在,所以原本的整数类型自动变更为小数类型)。...stack原义为堆栈的意思,放到pandas中就是将元素堆叠起来——从宽表向长表转换。...ok,那么可以预见的是在刚才获得的多列DataFrame基础上执行stack,将实现列转行堆叠的效果并得到一个Series。具体来说,结果如下: ?

    1.9K30

    Pandas 学习手册中文第二版:11~15

    如果结果中的列在当前正在处理的DataFrame对象中不存在,则 Pandas 将插入NaN值。...然后,行具有NaN值,其中源对象中不存在列。 指定连接类型 默认连接实际上沿着与连接相反的轴(行索引)上的索引标签执行外连接操作。 这使得标签的结果集类似于执行那些标签的并集。...在堆叠格式中,数据通常不规范化,并且在许多列中具有重复的值,或者在逻辑上应存在于其他表中的值(违反了整洁数据的另一个概念)。 取得以下数据,这些数据代表来自加速度计上的数据流。...此外,采用这种格式更容易添加新的变量和度量,因为可以简单地将数据添加为新行,而不需要通过添加新列来更改DataFrame的结构。 堆叠数据的性能优势 最后,我们将研究为什么要堆叠数据。...值未更改,因为重新采样仅选择了月底的日期,或者如果源中不存在该日期之前的值,则使用该日期之前的值进行填充。

    3.4K20
    领券