首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
您找到你想要的搜索结果了吗?
是的
没有找到

Multimodal UnsupervisedImage-to-Image Translation

无监督图像到图像的翻译是计算机视觉中一个重要且具有挑战性的问题。给定源域中的图像,目标是学习目标域中相应图像的条件分布,而不需要看到任何相应图像对的示例。虽然这种条件分布本质上是多模式的,但现有的方法过于简化了假设,将其建模为确定性的一对一映射。因此,它们无法从给定的源域图像生成不同的输出。为了解决这一限制,我们提出了一种多模式无监督图像到图像翻译(MUNIT)框架。我们假设图像表示可以分解为域不变的内容代码和捕获域特定属性的样式编码。为了将图像翻译到另一个域,我们将其内容编码与从目标域的样式空间采样的随机样式代码重新组合。我们分析了所提出的框架,并建立了几个理论结果。与最先进的方法进行比较的大量实验进一步证明了所提出的框架的优势。此外,我们的框架允许用户通过提供示例风格图像来控制翻译输出的风格。

03

Robust Data Augmentation Generative Adversarial Networkfor Object Detection

基于生成对抗性网络(GAN)的数据扩充用于提高目标检测模型的性能。它包括两个阶段:训练GAN生成器以学习小目标数据集的分布,以及从训练的生成器中采样数据以提高模型性能。在本文中,我们提出了一种流程化的模型,称为鲁棒数据增强GAN(RDAGAN),旨在增强用于目标检测的小型数据集。首先,将干净的图像和包含来自不同域的图像的小数据集输入RDAGAN,然后RDAGAN生成与输入数据集中的图像相似的图像。然后,将图像生成任务划分为两个网络:目标生成网络和图像翻译网络。目标生成网络生成位于输入数据集的边界框内的目标的图像,并且图像转换网络将这些图像与干净的图像合并。 定量实验证实,生成的图像提高了YOLOv5模型的火灾检测性能。对比评价表明,RDAGAN能够保持输入图像的背景信息,定位目标生成位置。此外,消融研究表明,RDAGAN中包括的所有组件和物体都发挥着关键作用。

02

AAAI Spring Symposium 2019|CrystalGan:使用生成对抗网络发现晶体结构

今天给大家介绍巴黎东大和索邦大学的Asma Nouira等人在AAAI Spring Symposium 2019上分享的文章“CrystalGAN: Learning to Discover Crystallographic Structures with Generative Adversarial Networks”。作者在文章中提出使用生成对抗网络(generative adversarial networks,GAN)可以高效地生成新的数据,因此可以应用于生成新的晶体结构数据。但在材料科学领域,需要生成相对于样本复杂度更高阶的数据,一般的生成对抗网络难以满足这一要求。本文提出的CrystalGan可以生成更高复杂度的新的稳定的晶体结构。本文提出的这一种高效的方法在新型氢化物发现等实际问题中可能会有比较深入的应用。

01

MIMOSA: 用于分子优化的多约束分子采样

今天给大家介绍一篇佐治亚理工学院Tianfan Fu等人发表在AAAI 2021上的文章“MIMOSA: Multi-constraint Molecule Sampling for Molecule Optimization”。分子优化促进药物发现,其目标是产生新的有效分子,使药物特性最大化,同时保持与输入分子的相似性。现有的生成模型和强化学习方法在同时优化多种药物属性方面仍面临一定困难。为此,本文提出多约束分子采样框架—MIMOSA,使用输入分子作为初始采样框架,并从目标分布中采样分子。MIMOSA首先预先训练两个属性不可知图神经网络(GNN),分别用于分子拓扑和子结构类型预测,其中子结构可以是原子或单环。MIMOSA用GNN进行迭代预测,并且采用三种基本的子结构操作(添加、替换、删除)来生成新的分子和相关的权重。权重可以编码多个约束,包括相似性约束和药物属性约束,在此基础上选择有前途的分子进行下一次预测。MIMOSA能够灵活地对多种属性和相似性约束进行编码,且高效地生成满足各种属性约束的新分子,在成功率方面比最佳基线改进高达49.6%。

04

Learning Texture Invariant Representation for Domain Adaptation

由于为语义分割注释像素级标签非常费力,因此利用合成数据是一个很有吸引力的解决方案。然而,由于合成域与真实域之间存在域间的差异,用合成数据训练的模型很难推广到真实数据中去。在本文中,我们考虑到两个域之间的根本区别作为纹理,提出了一种适应目标域纹理的方法。首先,我们利用风格转换算法对合成图像的纹理进行多样性处理。生成图像的各种纹理防止分割模型过度拟合到一个特定的(合成)纹理。然后通过自训练对模型进行微调,得到对目标纹理的直接监督。我们的结果达到了最先进的性能,我们通过大量的实验分析了在程式化数据集上训练的模型的属性。

03

学界 | 把酱油瓶放进菜篮子:UC Berkeley提出高度逼真的物体组合网络Compositional GAN

生成对抗网络(GAN)是在给定输入的条件下生成图像的一种强大方法。输入的格式可以是图像 [9,37,16,2,29,21]、文本短语 [33,24,23,11] 以及类标签布局 [19,20,1]。大多数 GAN 实例的目标是学习一种可以将源分布中的给定样例转换为输出分布中生成的样本的映射。这主要涉及到单个目标的转换(从苹果到橙子、从马到斑马或从标签到图像等),或改变输入图像的样式和纹理(从白天到夜晚等)。但是,这些直接的以输入为中心的转换无法直观体现这样一个事实:自然图像是 3D 视觉世界中交互的多个对象组成的 2D 投影。本文探索了组合在学习函数中所起到的作用,该函数将从边缘分布(如椅子和桌子)采集到的目标不同的图像样本映射到捕获其联合分布的组合样本(桌椅)中。

02
领券