首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

「Hudi系列」Hudi查询&写入&常见问题汇总

Soft Deletes(软删除) :使用软删除时,用户希望保留键,但仅使所有其他字段的值都为空。...通过确保适当的字段在数据集模式中可以为空,并在将这些字段设置为null之后直接向数据集插入更新这些记录,即可轻松实现这一点。...如何对存储在Hudi中的数据建模 在将数据写入Hudi时,可以像在键-值存储上那样对记录进行建模:指定键字段(对于单个分区/整个数据集是唯一的),分区字段(表示要放置键的分区)和preCombine/combine...Hudi如何处理输入中的重复记录 在数据集上执行 upsert操作时,提供的记录包含给定键的多条记录,然后通过重复调用有效负载类的 preCombine方法将所有记录合并为一个最终值。...也可以使用Spark数据源API读取和写入数据集。迁移后,可以使用此处讨论的常规方法执行写操作。这里也详细讨论该问题,包括部分迁移的方法。 18.

6.6K42

PySpark 读写 CSV 文件到 DataFrame

本文中,云朵君将和大家一起学习如何将 CSV 文件、多个 CSV 文件和本地文件夹中的所有文件读取到 PySpark DataFrame 中,使用多个选项来更改默认行为并使用不同的保存选项将 CSV 文件写回...目录 读取多个 CSV 文件 读取目录中的所有 CSV 文件 读取 CSV 文件时的选项 分隔符(delimiter) 推断模式(inferschema) 标题(header) 引号(quotes) 空值...(nullValues) 日期格式(dateformat) 使用用户指定的模式读取 CSV 文件 应用 DataFrame 转换 将 DataFrame 写入 CSV 文件 使用选项 保存模式 将 CSV...此示例将数据读取到 DataFrame 列"_c0"中,用于第一列和"_c1"第二列,依此类推。...但使用此选项,可以设置任何字符。 2.5 NullValues 使用 nullValues 选项,可以将 CSV 中的字符串指定为空。

1.1K20
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    写入 Hudi 数据集

    这一节我们将介绍使用DeltaStreamer工具从外部源甚至其他Hudi数据集摄取新更改的方法, 以及通过使用Hudi数据源的upserts加快大型Spark作业的方法。...Datasource Writer hudi-spark模块提供了DataSource API,可以将任何数据帧写入(也可以读取)到Hudi数据集中。...以下是在指定需要使用的字段名称的之后,如何插入更新数据帧的方法,这些字段包括 recordKey => _row_key、partitionPath => partition和precombineKey...Soft Deletes(软删除) :使用软删除时,用户希望保留键,但仅使所有其他字段的值都为空。...通过确保适当的字段在数据集模式中可以为空,并在将这些字段设置为null之后直接向数据集插入更新这些记录,即可轻松实现这一点。

    1.5K40

    Apache Hudi 0.10.0版本重磅发布!

    数据跳过对于优化查询性能至关重要,通过启用包含单个数据文件的列级统计信息(如最小值、最大值、空值数等)的列统计索引,对于某些查询允许对不包含值的文件进行快速裁剪,而仅仅返回命中的文件,当数据按列全局排序时...使用空间填充曲线(如 Z-order、Hilbert 等)允许基于包含多列的排序键有效地对表数据进行排序,同时保留非常重要的属性:在多列上使用空间填充曲线对行进行排序列键也将在其内部保留每个单独列的排序...,在需要通过复杂的多列排序键对行进行排序的用例中,此属性非常方便,这些键需要通过键的任何子集(不一定是键前缀)进行有效查询,从而使空间填充曲线对于简单的线性(或字典序)多列排序性能更优。...使用 0.10.0用户可以使用 dbt 创建增量 Hudi 数据集,详情请参阅 dbt-spark#issue187[12] 4.2 监控 Hudi 现在支持将指标发布到 Amazon CloudWatch...对于部署模型2,如果打算使用元数据表,则必须在所有编写器中启用元数据配置,否则会导致不一致写入器的数据丢失。 对于部署模型3,重新启动单个写入器和异步服务即可。

    2.4K20

    基于Apache Hudi + MinIO 构建流式数据湖

    它是为管理 HDFS 上大型分析数据集的存储而开发的。Hudi 的主要目的是减少流数据摄取过程中的延迟。 随着时间的推移,Hudi 已经发展到使用云存储[1]和对象存储,包括 MinIO。...Hudi 的设计预计基于键的快速更新插入和删除,因为它使用文件组的增量日志,而不是整个数据集。 时间线对于理解Hudi至关重要,因为它是所有 Hudi 表元数据的真实事件日志的来源。...Hudi读取 写入器和读取器之间的快照隔离允许从所有主要数据湖查询引擎(包括 Spark、Hive、Flink、Prest、Trino 和 Impala)中一致地查询表快照。...使用 Hudi 的一种典型方式是实时摄取流数据,将它们附加到表中,然后根据刚刚附加的内容编写一些合并和更新现有记录的逻辑。或者如果表已存在,则使用覆盖模式写入会删除并重新创建表。...软删除保留记录键并将所有其他字段的值清空。软删除保留在 MinIO 中,并且仅使用硬删除从数据湖中删除。

    2.1K10

    PySpark 读写 JSON 文件到 DataFrame

    本文中,云朵君将和大家一起学习了如何将具有单行记录和多行记录的 JSON 文件读取到 PySpark DataFrame 中,还要学习一次读取单个和多个文件以及使用不同的保存选项将 JSON 文件写回...文件的功能,在本教程中,您将学习如何读取单个文件、多个文件、目录中的所有文件进入 DataFrame 并使用 Python 示例将 DataFrame 写回 JSON 文件。...与读取 CSV 不同,默认情况下,来自输入文件的 JSON 数据源推断模式。 此处使用的 zipcodes.json 文件可以从 GitHub 项目下载。...()方法的路径传递给该方法,我们就可以将目录中的所有 JSON 文件读取到 DataFrame 中。...使用 PySpark StructType 类创建自定义 Schema,下面我们启动这个类并使用添加方法通过提供列名、数据类型和可为空的选项向其添加列。

    1.1K20

    Hive 和 Spark 分区策略剖析

    在这种情况下,希望发送的是将3个文件写入到HDFS中,所有数据都存储在每个分区的单个文件中。最终会生成9个文件,并且每个文件都有1个记录。...优化Spark分发数据方式来提升性能 即使我们知道了如何将文件写入磁盘,但是,我们仍须让Spark以符合实际的方式来构建我们的分区。在Spark中,它提供了许多工具来确定数据在整个分区中的分布方式。...然后,缓存是需要消费一定资源的,如果你的数据集无法放入内存中,或者无法释放内存,将数据有效的存储在内存中两次,那么必须使用磁盘缓存,这有其自身的局限性和显著的性能损失。...按列重新分区使用HashPartitioner,将具有相同值的数据,分发给同一个分区,实际上,它将执行以下操作: 但是,这种方法只有在每个分区键都可以安全的写入到一个文件时才有效。...范围分区器根据某些给定键的顺序在Spark分区之间进行拆分行,但是,它不仅仅是全局排序,而且还拥有以下特性: 具有相同散列的所有记录将在同一个分区中结束; 所有Spark分区都将有一个最小值和最大值与之关联

    1.4K40

    Spark入门指南:从基础概念到实践应用全解析

    它将分布式数据抽象为弹性分布式数据集(RDD),并为运行在其上的上层组件提供 API。所有 Spark 的上层组件都建立在 Spark Core 的基础之上。...groupByKey 将键值对 RDD 中具有相同键的元素分组到一起,并返回一个新的 RDD reduceByKey 将键值对 RDD 中具有相同键的元素聚合到一起,并返回一个新的 RDD sortByKey...从外部存储系统 由外部存储系统的数据集创建,包括本地的文件系统,还有所有 Hadoop 支持的数据集,比如 HDFS、Cassandra、HBase 等: val rdd1 = sc.textFile(...唯一的区别是,会将RDD中的数据进行序列化 MEMORY_AND_DISK_SER_2 低 高 部分 部分 数据存2份 DISK_ONLY 低 高 否 是 使用未序列化的Java对象格式,将数据全部写入磁盘文件中...Complete 每当有更新时,将流 DataFrame/Dataset 中的所有行写入接收器。 Update 每当有更新时,只将流 DataFrame/Dataset 中更新的行写入接收器。

    67841

    Spark入门指南:从基础概念到实践应用全解析

    它将分布式数据抽象为弹性分布式数据集(RDD),并为运行在其上的上层组件提供 API。所有 Spark 的上层组件都建立在 Spark Core 的基础之上。...Spark SQLSpark SQL 是一个用于处理结构化数据的 Spark 组件。它允许使用 SQL 语句查询数据。Spark 支持多种数据源,包括 Hive 表、Parquet 和 JSON 等。...RDD 中不同的元素 groupByKey 将键值对 RDD 中具有相同键的元素分组到一起,并返回一个新的 RDDreduceByKey将键值对 RDD 中具有相同键的元素聚合到一起...从外部存储系统由外部存储系统的数据集创建,包括本地的文件系统,还有所有 Hadoop 支持的数据集,比如 HDFS、Cassandra、HBase 等:val rdd1 = sc.textFile("hdfs...Complete 每当有更新时,将流 DataFrame/Dataset 中的所有行写入接收器。

    2.9K42

    hudi中的写操作

    在本节中,我们将介绍如何使用DeltaStreamer工具从外部数据源甚至其他Hudi表中获取新的更改,以及如何使用Hudi数据源通过upserts加速大型Spark作业。...记录键唯一地标识每个分区中的一条记录/行。如果想要具有全局唯一性,有两种选择。您可以将数据集设置为非分区的,也可以利用Global索引来确保记录键是惟一的,而不管分区路径如何。...更多信息请参考在Hudi中删除支持。 软删除:保留记录键,只是空出所有其他字段的值。这可以通过确保表模式中适当的字段为空,并在将这些字段设置为空后简单地插入表来实现。...对于所有要删除的记录,该列的值必须设置为true,对于要被推翻的记录,该列的值必须设置为false或为空。...示例使用硬删除方法2,从数据集deleteDF中存在的表中删除所有记录: deleteDF // dataframe containing just records to be deleted

    1.7K10

    收藏!6道常见hadoop面试题及答案解析

    HDFS针对顺序访问和“一次写入和多次读取”的使用模式进行了优化。HDFS具有很高的读写速率,因为它可以将I/O并行到多个驱动器。HBase在HDFS之上,并以柱状方式将数据存储为键/值对。...JSON文件JSON记录与JSON文件不同;每一行都是其JSON记录。由于JSON将模式和数据一起存储在每个记录中,因此它能够实现完整的模式演进和可拆分性。此外,JSON文件不支持块级压缩。   ...Avro文件以JSON格式定义模式,数据将采用二进制JSON格式。Avro文件也是可拆分的,并支持块压缩。更适合需要行级访问的使用模式。这意味着查询该行中的所有列。...Columnar格式,例如RCFile,ORCRDBM以面向行的方式存储记录,因为这对于需要在获取许多列的记录的情况下是高效的。如果在向磁盘写入记录时已知所有列值,则面向行的写也是有效的。...但是这种方法不能有效地获取行中的仅10%的列或者在写入时所有列值都不知道的情况。这是Columnar文件更有意义的地方。

    2.9K80

    Apache Hudi 0.14.0版本重磅发布!

    • drop:传入写入中的匹配记录将被删除,其余记录将被摄取。 • fail:如果重新摄取相同的记录,写入操作将失败。本质上由键生成策略确定的给定记录只能被摄取到目标表中一次。...由于在查找过程中从各种数据文件收集索引数据的成本很高,布隆索引和简单索引对于大型数据集表现出较低的性能。而且,这些索引不保留一对一的记录键来记录文件路径映射;相反,他们在查找时通过优化搜索来推断映射。...所有 Spark 写入器都提供此功能,但有一定限制。...这种支持涵盖了数据集的写入和读取。Hudi 通过 Hadoop 配置方便使用原生 Parquet 布隆过滤器。用户需要使用代表要应用布隆过滤器的列的特定键来设置 Hadoop 配置。...模式演进由清单方法支持。由于新的 schema 处理改进,不再需要从文件中删除分区列。

    1.8K30

    基于Apache Hudi + MinIO 构建流式数据湖

    它是为管理 HDFS 上大型分析数据集的存储而开发的。Hudi 的主要目的是减少流数据摄取过程中的延迟。 随着时间的推移,Hudi 已经发展到使用云存储[1]和对象存储,包括 MinIO。...Hudi 的设计预计基于键的快速更新插入和删除,因为它使用文件组的增量日志,而不是整个数据集。 时间线对于理解Hudi至关重要,因为它是所有 Hudi 表元数据的真实事件日志的来源。...Hudi读取 写入器和读取器之间的快照隔离允许从所有主要数据湖查询引擎(包括 Spark、Hive、Flink、Prest、Trino 和 Impala)中一致地查询表快照。...使用 Hudi 的一种典型方式是实时摄取流数据,将它们附加到表中,然后根据刚刚附加的内容编写一些合并和更新现有记录的逻辑。或者如果表已存在,则使用覆盖模式写入会删除并重新创建表。...软删除保留记录键并将所有其他字段的值清空。软删除保留在 MinIO 中,并且仅使用硬删除从数据湖中删除。

    1.6K20

    Apache Spark 2.2.0 中文文档 - Spark SQL, DataFrames and Datasets Guide | ApacheCN

    (配置) JSON Datasets (JSON 数据集) Hive 表 指定 Hive 表的存储格式 与不同版本的 Hive Metastore 进行交互 JDBC 连接其它数据库...该页面所有例子使用的示例数据都包含在 Spark 的发布中, 并且可以使用 spark-shell, pyspark shell, 或者 sparkR shell来运行....Spark 2.0 中的SparkSession 为 Hive 特性提供了内嵌的支持, 包括使用 HiveQL 编写查询的能力, 访问 Hive UDF,以及从 Hive 表中读取数据的能力.为了使用这些特性...例如, 我们可以使用以下 directory structure (目录结构)将所有以前使用的 population data (人口数据)存储到 partitioned table (分区表)中,...Hive 不区分大小写, 而 Parquet 不是 Hive 认为所有 columns (列)都可以为空, 而 Parquet 中的可空性是 significant (重要)的.

    26.1K80

    Spark Streaming入门

    其他Spark示例代码执行以下操作: 读取流媒体代码编写的HBase Table数据 计算每日汇总的统计信息 将汇总统计信息写入HBase表 示例数据集 油泵传感器数据文件放入目录中(文件是以逗号为分隔符的...Spark Streaming将监视目录并处理在该目录中创建的所有文件。(如前所述,Spark Streaming支持不同的流式数据源;为简单起见,此示例将使用CSV。)...HBase表格模式 流数据的HBase表格模式如下: 泵名称日期和时间戳的复合行键 可以设置报警列簇,来监控数据。请注意,数据和警报列簇可能会设为在一段时间后失效。...日常统计汇总的模式如下所示: 泵名称和日期的复合行键 列簇统计 最小值,最大值和平均值。...[vcw2evmjap.png] 以下代码读取HBase表,传感器表,psi列数据,使用StatCounter计算此数据的统计数据,然后将统计数据写入传感器统计数据列。

    2.2K90

    Spark SQL 外部数据源

    lz4, or snappyNone压缩文件格式ReadmergeSchematrue, false取决于配置项 spark.sql.parquet.mergeSchema当为真时,Parquet 数据源将所有数据文件收集的...但是 Spark 程序默认是没有提供数据库驱动的,所以在使用前需要将对应的数据库驱动上传到安装目录下的 jars 目录中。...8.3 分桶写入 分桶写入就是将数据按照指定的列和桶数进行散列,目前分桶写入只支持保存为表,实际上这就是 Hive 的分桶表。...指定是否应该将所有值都括在引号中,而不只是转义具有引号字符的值。...createTableOptions写入数据时自定义创建表的相关配置createTableColumnTypes写入数据时自定义创建列的列类型 数据库读写更多配置可以参阅官方文档:https://spark.apache.org

    2.4K30

    大数据Hadoop生态圈介绍

    其中Map对应数据集上的独立元素进行指定的操作,生成键-值对形式中间,Reduce则对中间结果中相同的键的所有值进行规约,以得到最终结果。...Map task:解析每条数据记录,传递给用户编写的map()函数并执行,将输出结果写入到本地磁盘(如果为map—only作业,则直接写入HDFS)。...9、HBase(分布式列存储数据库) HBase是一个建立在HDFS之上,面向列的针对结构化数据的可伸缩、高可靠、高性能、分布式和面向列的动态模式数据库。...HBase采用了BigTable的数据模型:增强的稀疏排序映射表(Key/Value),其中,键由行关键字、列关键字和时间戳构成。...11、Kafka(分布式消息队列) Kafka是一种高吞吐量的分布式发布订阅消息系统,它可以处理消费者规模的网站中的所有动作流数据。实现了主题、分区及其队列模式以及生产者、消费者架构模式。

    96520

    apache hudi 0.13.0版本重磅发布

    迁移指南:行为更改 写路径中的模式处理 许多用户已请求将 Hudi 用于 CDC 用例,他们希望在新模式中删除现有列时能够实现模式自动演化。 从 0.13.0 版本开始,Hudi 现在具有此功能。...您可以允许模式自动演化,其中可以将现有列删除到新模式中。...要启用自动删除列以及传入批次的新演变模式,请将其设置为 true。 此配置不需要通过使用例如 ALTER TABLE … Spark 中的 DROP COLUMN 手动演变模式。...写入数据中的无锁消息队列 在以前的版本中,Hudi 使用生产者-消费者模型通过有界内存队列将传入数据写入表中。 在此版本中,我们添加了一种新型队列,利用 Disruptor,它是无锁的。...JSON模式转换 对于配置模式注册表的 DeltaStreamer 用户,添加了一个 JSON 模式转换器,以帮助将 JSON 模式转换为目标 Hudi 表的 AVRO。

    1.8K10
    领券