首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    在Python机器学习中如何索引、切片和重塑NumPy数组

    在本教程中,你将了解在NumPy数组中如何正确地操作和访问数据。 完成本教程后,你将知道: 如何将你的列表数据转换为NumPy数组。 如何使用Pythonic索引和切片访问数据。...教程概述 本教程分为4个部分; 他们是: 从列表到数组 数组索引 数组切片 数组重塑 1.从列表到数组 一般来说,我建议使用Pandas或NumPy函数从文件加载数据。...一维列表到数组 你可以加载或生成你的数据,并将它看作一个列表来访问。 你可以通过调用NumPy的array()函数将一维数据从列表转换为数组。...[11 22 33 44 55] numpy.ndarray'> 二维列表到数组 在机器学习中,你更有可能使用到二维数据。...(3, 2) (3, 2, 1) 概要 在本教程中,你了解了如何使用Python访问和重塑NumPy数组中的数据。 具体来说,你了解到: 如何将你的列表数据转换为NumPy数组。

    19.1K90

    PyTorch入门视频笔记-从数组、列表对象中创建Tensor

    从数组、列表对象创建 Numpy Array 数组和 Python List 列表是 Python 程序中间非常重要的数据载体容器,很多数据都是通过 Python 语言将数据加载至 Array 数组或者...(为了方便描述,后面将 Numpy Array 数组称为数组,将 Python List 列表称为列表。)...PyTorch 从数组或者列表对象中创建 Tensor 有四种方式: torch.Tensor torch.tensor torch.as_tensor torch.from_numpy >>> import...Tensor,但是 torch.from_numpy 只能将数组转换为 Tensor(为 torch.from_numpy 函数传入列表,程序会报错); 从程序的输出结果可以看出,四种方式最终都将数组或列表转换为...PyTorch 提供了这么多方式从数组和列表中创建 Tensor。

    4.9K20

    资源 | 从数组到矩阵的迹,NumPy常见使用大总结

    '> 那么我们为什么要使用 NumPy 数组而不使用标准的 Python 数组呢?...NumPy 数组的索引方式和 Python 列表的索引方式是一样的,从零索引数组的第一个元素开始我们可以通过序号索引数组的所有元素。...例如 A[i] 索引数组 A 中的第 i+1 个元素。...,注意 Python 列表和数组的索引都是左闭右开,即 A 中包含 2 索引的元素而不包含 5 索引的元素: A[lowerbound(inclusive): upperbound(exclusive)...为了定义两个形状是否是可兼容的,NumPy 从最后开始往前逐个比较它们的维度大小。在这个过程中,如果两者的对应维度相同,或者其一(或者全是)等于 1,则继续进行比较,直到最前面的维度。

    8.5K90

    CA1832:使用 AsSpan 或 AsMemory 而不是基于范围的索引器来获取数组

    值 规则 ID CA1832 类别 “性能” 修复是中断修复还是非中断修复 非中断 原因 对数组使用范围索引器并向 ReadOnlySpan 或 ReadOnlyMemory 隐式赋值。...规则说明 对数组使用范围索引器并分配给内存或范围类型:Span 上的范围索引器是非复制的 Slice 操作,但对于数组上的范围索引器,将使用方法 GetSubArray 而不是 Slice,这会生成数组所请求部分的副本...仅在对范围索引器操作的结果使用隐式强制转换时,分析器才会报告。...若要使用它,请将光标置于数组冲突上,然后按 Ctrl+。 (句点)。 从显示的选项列表中选择“在数组上使用 AsSpan 而不是基于范围的索引器”。...AsSpan 而不是基于范围的索引器 CA1833:使用 AsSpan 或 AsMemory 而不是基于范围的索引器来获取数组的 Span 或 Memory 部分 另请参阅 性能规则

    1.3K00

    python元组下标_python获取数组下标

    2、获取数组元素当给一个数组赋值了之后,我们通常需要获取数组中某个指定元素,比如获取arr数组中第一个元素 arr,通过元素下标可获取对应… 再比如说,如果需要频繁对序列做先出先进的操作,collection.deque...创建列表 sample_list = python 列表操作 sample_list = 得到列表中的某一…下标:按下标读写,就当作数组处理 以0开始,有负下标的使用 0第一个元素,-1最后一个元素,...因此,我们可以使用 list 来获取下标对应的值。 如果我们深入下列表的底层原理,会发现列表是基于 pylistobject 实现的。...(2) tupletuple 是不可变 list,一旦创建了一… numpy数组的索引遵循python中x模式,也就是通过下标来索引对应位置的元素。...在numpy数组索引中,以下问题需要主要: 1)对于单个元素索引,索引从0开始,也就是x是第一个元素,x对应第n个元素,最后一个元素为x,d为该维度的大小。

    3.2K20

    Python数据科学手册(三)【Pandas的对象介绍】

    Pandas提供了以下几种基本的数据类型: Series DataFrame Index Pandas Series对象 Pandas Series 是一个一维的数组对象,它可以从列表或者数组中创建。...float64 从上面可以看出,Series对象同时封装了值序列和索引序列,这些可以通过values和index属性分别获取,values实际上就是一个Numpy数组 data.values # array...2.从Numpy数组中创建 Pandas Series对象和Numpy 数组最大的区别就是Numpy只支持整数型数值索引,而Pandas Series支持各种类型的索引,而且可以显示声明索引。...data可以为列表或者Numpy数组。...image.png 从字典中构建: pd.DataFrame({'population': population, 'area': area}) 从二维数组构建 可以显示声明索引

    91230

    Numpy 修炼之道 (5)—— 索引和切片

    单个元素索引 1-D数组的单元素索引是人们期望的。它的工作原理与其他标准Python序列一样。它是从0开始的,并且接受负索引来从数组的结尾进行索引。...切片支持 可以使用切片和步长来截取不同长度的数组,使用方式与Python原生的对列表和元组的方式相同。...索引数组 Numpy数组可以被其他数组索引。对于索引数组的所有情况,返回的是原始数据的副本,而不是一个获取切片的视图。 索引数组必须是整数类型。...x[np.array([3, 3, 1, 8])] 布尔索引数组 使用(整数)索引列表时,需要提供要选择的索引列表,最后生成的结果形状与索引数组形状相同;但是在使用布尔索引时,布尔数组必须与要编制索引的数组的初始维度具有相同的形状...索引数组中的元素始终以行优先(C样式)顺序进行迭代和返回。结果也与y[np.nonzero(b)]相同。与索引数组一样,返回的是数据的副本,而不是一个获取切片的视图。

    1K60

    看图学NumPy:掌握n维数组基础知识点,看这一篇就够了

    乍一看,NumPy数组类似于Python列表。它们都可以用作容器,具有获取(getting)和设置(setting)元素以及插入和移除元素的功能。...△在末尾添加元素时,Python列表复杂度为O(1),NumPy复杂度为O(N) 向量运算 向量初始化 创建NumPy数组的一种方法是从Python列表直接转换,数组元素的类型与列表元素类型相同。...从NumPy数组中获取数据的另一种超级有用的方法是布尔索引,它允许使用各种逻辑运算符,来检索符合条件的元素: ? 注意:Python中的三元比较3NumPy数组中不起作用。...不过排序函数的功能比Python列表对应函数更少: ? 搜索向量中的元素 与Python列表相反,NumPy数组没有index方法。 ?...3、还有一个参数order,但是如果从普通(非结构化)数组开始,则既不快速也不容易使用。

    6K20

    解决pandas.core.frame.DataFrame格式数据与numpy.ndarray格式数据不一致导致无法运算问题

    这使得ndarray在进行向量化操作时非常高效,比使用Python原生列表进行循环操作要快得多。...创建ndarray在numpy中,我们可以使用多种方式来创建ndarray对象:通过Python原生列表或元组创建:使用numpy.array()函数可以从一个Python原生列表或元组创建一个ndarray...例如:pythonCopy codeimport numpy as np# 从列表创建一维ndarraya = np.array([1, 2, 3, 4, 5])print(a)# 从嵌套列表创建二维ndarrayb...可以使用方括号​​[]​​来访问数组的元素。下面是一些常用的索引和切片操作:整数索引:通过指定索引位置来访问数组的元素。例如​​a[0]​​可以访问数组​​a​​的第一个元素。...布尔索引:通过指定一个布尔数组来访问数组中满足某个条件的元素。例如​​a[a > 5]​​可以访问数组​​a​​中大于5的元素。花式索引:通过指定一个索引数组或整数数组来访问数组的元素。

    53220

    图解NumPy:常用函数的内在机制

    NumPy 数组和 Python 列表 乍一看,NumPy 数组与 Python 列表类似。它们都可作为容器,能够快速获取和设置元素,但插入和移除元素会稍慢一些。...向量:一维数组 向量初始化 为了创建 NumPy 数组,一种方法是转换 Python 列表。NumPy 数组类型可以直接从列表元素类型推导得到。...Python 列表与 NumPy 数组的对比 为了获取 NumPy 数组中的数据,另一种超级有用的方法是布尔索引(boolean indexing),它支持使用各类逻辑运算符: any 和 all 的作用与在...搜索向量中的元素 与 Python 列表相反,NumPy 数组没有索引方法。人们很久之前就在请求这个功能,但一直还没实现。...Python 列表与 NumPy 数组的对比,index() 中的方括号表示可以省略 j 或同时省略 i 和 j。

    3.7K10

    数据分析-numpy库快速了解

    ,有助于节省运算和存储空间 具体可以看下面一个例子:(来源嵩天老师案例) 3.numpy库怎么使用 先安装numpy库 pip install numpy 导入使用 import numpy as np...4.numpy中的数组对象ndarray ndarray是一个多维数组对象,由两部分构成: • 实际的数据 • 描述这些数据的元数据(数据维度、数据类型等) 创建数组对象 支持非常多种的创建方法,有列表数据创建或者...numpy自带函数创建 列表元素创建 全0 数组 全1数组 arange指定有序范围 查看数组对象属性 5.numpy数组对象操作 维度变换 通过reshape快速进行维度变换,这里由4行4列变成2行8...切片索引 索引:获取数组中特定位置元素的过程,和列表使用方式一样。先获取最外层的索引,然后在获取内层的索引。 切片:获取数组元素子集的过程,和列表切片一样,先获取外层,然后再针对内层操作。...执行数学函数 numpy提供了数学中的很多函数,可以之间作用于数组对象上 执行统计函数 numpy同时也提供了很多统计函数,便于我们快速统计出一些要用的数据。

    1.3K30

    图解NumPy:常用函数的内在机制

    NumPy 数组和 Python 列表 乍一看,NumPy 数组与 Python 列表类似。它们都可作为容器,能够快速获取和设置元素,但插入和移除元素会稍慢一些。...向量:一维数组 向量初始化 为了创建 NumPy 数组,一种方法是转换 Python 列表。NumPy 数组类型可以直接从列表元素类型推导得到。...Python 列表与 NumPy 数组的对比 为了获取 NumPy 数组中的数据,另一种超级有用的方法是布尔索引(boolean indexing),它支持使用各类逻辑运算符: any 和 all 的作用与在...搜索向量中的元素 与 Python 列表相反,NumPy 数组没有索引方法。人们很久之前就在请求这个功能,但一直还没实现。...Python 列表与 NumPy 数组的对比,index() 中的方括号表示可以省略 j 或同时省略 i 和 j。

    3.3K20

    数据科学Python基础(附示例代码和练习题目)

    我们可以用“[]”创建: fruits =["pineapple", "apple", "lemon","strawberry", "orange", "kiwi"] list中的子集 我们可以使用索引从列表中获取元素...Python的列表索引从0开始,因此,列表中第一个元素的索引值为0。我们也可以使用负索引访问列表中的元素,若列表中最后一个元素的索引为-1,那么其前一个元素的索引为-2,依此类推。...上述例子中使用的是一维数组,我们也可以创建2,3,4或更多维数组。我们也可以独立于数组的维度来获取数组的子集。...Numpy中的一些基本的函数在Python的列表中也存在,如 np.sort() 和np.sum() 。但是需要注意的是,Numpy在数组中会强制执行单一类型,这会加快程序的计算速度。...获取list的子集 获取2维Numpy数组子集 Numpy元素操作 Numpy的基本统计操作 原文链接:https://towardsdatascience.com/Python-basics-for-data-science

    1.4K50

    基于Jupyter快速入门Python|Numpy|Scipy|Matplotlib

    print(nums[2:]) # 从索引 2 到列表末尾获取一个切片;打印 "[2, 3, 4]" print(nums[:2]) # 从列表开始到索引 2(不包括 2)获取一个切片...可以从嵌套的 Python 列表初始化 NumPy 数组,并且使用方括号访问元素: import numpy as np a = np.array([1, 2, 3]) # 创建一个一维数组 print...:当使用切片索引 NumPy 数组时,结果数组视图总是原始数组的子数组。...[0, 0], a[1, 1], a[2, 0]])) # 打印 "[1 4 5]" # 使用整数数组索引时,可以从源数组中重复使用相同的元素: print(a[[0, 0], [1, 1]])...]",这是通过 b 中的索引选择的结果 # 使用 b 中的索引从 a 中修改每一行的一个元素 a[np.arange(4), b] += 10 print(a) # 打印 "array([[11,

    71810
    领券