因此,无论何时发生任何错误,它都可以追溯转换的路径并重新生成计算结果。 我们希望Spark应用程序运行24小时 x 7,并且无论何时出现任何故障,我们都希望它尽快恢复。...但是,Spark在处理大规模数据时,出现任何错误时需要重新计算所有转换。你可以想象,这非常昂贵。 缓存 以下是应对这一挑战的一种方法。...这样,当出现任何错误时,我们不必一次又一次地重新计算这些转换。 数据流允许我们将流数据保存在内存中。当我们要计算同一数据上的多个操作时,这很有帮助。...累加器变量 用例,比如错误发生的次数、空白日志的次数、我们从某个特定国家收到请求的次数,所有这些都可以使用累加器来解决。 每个集群上的执行器将数据发送回驱动程序进程,以更新累加器变量的值。...累加器仅适用于关联和交换的操作。例如,sum和maximum有效,而mean无效。 广播变量 当我们处理位置数据时,比如城市名称和邮政编码的映射,这些都是固定变量。
; (4)持久性:保存和加载算法、模型和管道; (5)实用工具:线性代数、统计、数据处理等工具。...现在,所有转换器和估计器可共享用于指定参数的公共API。ParamMap是一组(参数,值)对。 PipeLine:翻译为流水线或者管道。...1、StringIndexer StringIndexer转换器可以把一列类别型的特征(或标签)进行编码,使其数值化,索引的范围从0开始,该过程可以使得相应的特征索引化,使得某些无法接受类别型特征的算法可以使用...索引构建的顺序为标签的频率,优先编码频率较大的标签,所以出现频率最高的标签为0号。如果输入的是数值型的,会首先把它转化成字符型,然后再对其进行编码。 (1)首先,引入所需要使用的类 。...其主要使用场景一般都是和StringIndexer配合,先用StringIndexer将标签转化成标签索引,进行模型训练,然后在预测标签的时候再把标签索引转化成原有的字符标签。
在实现基本功能时,你很可能会遇到很多错误。它只适用于与现有集群(独立的Spark、YARN或Mesos)进行交互。 因此,第一步是从这里下载Apache Spark的最新版本。...这将在更新脚本的情况下重新启动终端会话: source ~/.bashrc 现在,在终端中输入pyspark,它将在默认浏览器中打开Jupyter和一个自动初始化变量名为sc的Spark环境(它是Spark...Spark会话实例可以使用Spark在集群中执行用户自定义操作。在Scala和Python中,当你启动控制台时,Spark会话变量就是可用的: ?...在以后的文章中,我们将讨论诸如特征提取和构建机器学习管道之类的主题。 局部向量 MLlib支持两种类型的本地向量:稠密和稀疏。当大多数数字为零时使用稀疏向量。...这只是我们PySpark学习旅程的开始!我计划在本系列中涵盖更多的内容,包括不同机器学习任务的多篇文章。 在即将发表的PySpark文章中,我们将看到如何进行特征提取、创建机器学习管道和构建模型。
特征提取是指我们可能会关注从输入数据中产生特征向量和标签的一系列可能的转换。在我们的例子中,我们会将输入数据中用字符串表示的类型变量,如intl_plan转化为数字,并index(索引)它们。...我们通过定义两个阶段:StringIndexer和VectorAssembler,将这些转换步骤纳入我们的管道。...定义管道的一个优点是,你将了解到相同的代码正在应用于特征提取阶段。使用MLlib,这里只需要几行简短的代码!...通过采用二值分类预测器来产生ROC曲线,该预测器使用阈值来给连续预测值的定标签。...当你改变模型的阈值时,会出现两种极端的情况,一种情况是真阳性概率(TPR)和假阳性概率(FPR)同时为0,因为所有内容都标注为“未流失”,另外一种情况是TPR和FPR两者都为1,因为一切都被贴上了“流失
从顶层上看,ml包主要包含三大抽象类:转换器、预测器和工作流。...HashingTF使用散列技巧。通过应用散列函数将原始要素映射到索引,然后基于映射的索引来计算项频率。 IDF : 此方法计算逆文档频率。...但注意在计算时还是一个一个特征向量分开计算的。通常将最大,最小值设置为1和0,这样就归一化到[0,1]。Spark中可以对min和max进行设置,默认就是[0,1]。...NaiveBayes:基于贝叶斯定理,这个模型使用条件概率来分类观测。 PySpark ML中的NaiveBayes模型支持二元和多元标签。...管道/工作流(Pipeline): Spark ML Pipeline 的出现,是受到了 scikit-learn 项目的启发,并且总结了 MLlib 在处理复杂机器学习问题上的弊端,旨在向用户提供基于
RAG 和微调并不是对立的,它们可以互相补充,在一起使用时可能会带来最好的效果。 编码器微调 关于编码器微调方法,持保留态度,因为最新的为搜索优化的 Transformer 编码器已经相当高效。...虽然提升不大,但了解这一选项是有益的,特别是当你在针对特定领域数据集构建 RAG 时。 排名器微调 另一个选择是使用交叉编码器重新排名检索结果,这适用于那些不完全信任基础编码器的情况。...(原论文中的双编码器),基于查询、上下文和答案的三元组。...RAG整体框架 基础RAG 基础 RAG 案例的过程大致如下:首先,将文本分割成不同的段落;接着,使用某种 Transformer 编码器模型将这些段落转换成向量;然后,把这些向量存储到一个索引中;最后...在实际运行时,我们使用相同的编码器模型将用户的查询转换成向量,然后对这个查询向量进行搜索,针对索引找到前 k 个结果,从数据库中检索相应的文本段落,并将它们作为上下文输入到 LLM 的提示中。
在 Halodoc,当我们开始数据工程之旅时,我们采用了基于时间戳的数据迁移。我们依靠修改后的时间戳将数据从源迁移到目标。我们几乎用这个管道服务了 2 年。...HUDI 中的索引 索引在 HUDI 中对于维护 UPSERT 操作和读取查询性能非常有用。有全局索引和非全局索引。我们使用默认的bloom索引并为索引选择了一个静态列,即非全局索引。...在 Platform 2.0 中,我们的大部分流水线都使用 Jenkins 和 API 实现自动化。我们通过部署烧瓶服务器并使用 boto3 创建资源来自动创建 DMS 资源。...记录、监控和警报 尽管我们的基础设施是健壮的、容错的和高度可扩展的,但有时会出现可能导致基础设施停机的意外错误。...工作流程编排 任何数据平台都需要调度能力来运行批处理数据管道。由于我们已经在之前的平台中使用 Airflow 进行工作流编排,因此我们继续使用相同的编排工具。
我们可以使用 Pandas 的时间序列工具进行索引、重采样、平滑处理等。...2.1 时间索引与重采样 Pandas 提供了非常灵活的时间索引,支持将字符串转换为日期格式,并使用 resample() 函数进行时间重采样。...第七部分:Pandas 与大数据的结合:PySpark 和 Vaex 虽然 Pandas 对于中小规模数据处理足够强大,但面对 TB 级别的大数据时,它的单机性能可能会显得捉襟见肘。...7.1 使用 PySpark 进行大数据处理 PySpark 是 Spark 在 Python 上的接口,擅长处理分布式大数据集。...8.1 使用 query() 进行复杂查询 Pandas 的 query() 方法允许我们像 SQL 一样进行数据查询,尤其在需要进行多条件筛选时,query() 会比布尔索引更简洁高效。
都可以用于生成词项频率向量; IDF:IDF是一个预测器,调用其fit方法后得到IDFModel,IDFModel将每个特征向量进行缩放,这样做的目的是降低词项在语料库中出现次数导致的权重; from...idfModel.transform(featurizedData) rescaledData.select("label", "features").show() Word2Vec Word2Vec是一个使用文档中的词序列的预测器...个特征被处理; 每个特征索引从0开始; 索引类别特征并转换原特征值为索引值; 下面例子,读取一个含标签的数据集,使用VectorIndexer进行处理,转换类别特征为他们自身的索引,之后这个转换后的特征数据就可以直接送入类似...,正负无穷都必须明确的提供以覆盖所有数值,也就是说,在指定分割范围外的数值将被作为错误对待; 注意:如果你不知道目标列的上下限,你需要添加正负无穷作为你分割的第一个和最后一个箱; 注意:提供的分割顺序必须是单调递增的...result.show() Imputer Imputer用于对数据集中的缺失值进行填充,可以通过均值或者中位数等对指定未知的缺失值填充,输入特征需要是Float或者Double类型,当前Imputer不支持类别特征和对于包含类别特征的列可能会出现错误数值
NLP的重要文章中所深入讨论的,在ClassifierDL之前的所有这些文本处理步骤都可以在指定的管道序列中实现,并且每个阶段都是一个转换器或估计器。...基本上,文本嵌入方法在固定长度的向量中对单词和句子进行编码,以极大地改进文本数据的处理。这个想法很简单:出现在相同上下文中的单词往往有相似的含义。...它有两种变体,一种是用Transformer编码器训练的,另一种是用深度平均网络(DAN)训练的。...Spark-NLP中ClassifierDL和USE在文本分类的应用 在本文中,我们将使用AGNews数据集(文本分类任务中的基准数据集之一)在Spark NLP中使用USE和ClassifierDL构建文本分类器...让我们在Spark NLP管道中应用这些步骤,然后使用glove嵌入来训练文本分类器。
引 言 在PySpark中包含了两种机器学习相关的包:MLlib和ML,二者的主要区别在于MLlib包的操作是基于RDD的,ML包的操作是基于DataFrame的。...01 ML简介 在ML包中主要包含了三个主要的抽象类:转换器、评估器、管道,本文先来介绍第一种抽象类——转换器。...02 转换器 在PySpark中,我们通常通过将一个新列附加到DataFrame来转换数据。 Binarizer() 用处:根据指定的阈值将连续变量转换为对应的二进制值。...1.2| 1.0| | 1.5| 1.0| | NaN| 2.0| | NaN| 2.0| +------+-------+ RegexTokenizer() 用处:使用正则表达式的字符串分词器...words| +--------+------------+ |ASD VA c|[asd, va, c]| +--------+------------+ VectorSlicer() 用处:给定一个索引列表
在这篇博文中,我们将探讨每种角色以下三种赋能 使用 Notebook Workflows来协作和构建复杂的 Apache Spark 的数据管道 将独立和幂等的笔记本作为 单一执行单元 进行编排 无需定制一次性或独特的解决方案...我们不仅要使用 MLlib 提供的逻辑回归模型族的二项逻辑回归,还要使用spark.ml管道及其变形和估计器。 创建机器学习管道 Python代码片段如何用变换器和估计器创建管道。...坚持和序列化ML管道是导出 MLlib 模型的一种方法。另一种方法是使用Databricks dbml-local库,这是实时服务的低延迟需求下的首选方式。...使用这些API,数据工程师可以将所有上述管道作为 单个执行单元 串在一起。 [Webp.net-gifmaker-1.gif] 实现这一目标的一个途径是在笔记本电脑中分享输入和输出。...当复杂的数据管道时,当由不同的人物角色构建的无数笔记本可以作为一个单一且连续的执行单元来执行时,它们一起变得高效。
动态分区裁剪 当优化器在编译时无法识别可跳过的分区时,可以使用"动态分区裁剪",即基于运行时推断的信息来进一步进行分区裁剪。...当编译器无法做出最佳选择时,用户可以使用join hints来影响优化器以便让它选择更好的计划。...增强的Python API:PySpark和Koalas Python现在是Spark中使用较为广泛的编程语言,因此也是Spark 3.0的重点关注领域。...更好的错误处理 对于Python用户来说,PySpark的错误处理并不友好。该版本简化了PySpark异常,隐藏了不必要的JVM堆栈跟踪信息,并更具Python风格化。...可观察的指标 持续监控数据质量变化是管理数据管道的一种重要功能。Spark 3.0引入了对批处理和流应用程序的功能监控。可观察的指标是可以在查询上定义的聚合函数(DataFrame)。
sys #下面这些目录都是你自己机器的Spark安装目录和Java安装目录 os.environ['SPARK_HOME'] = "/Users/***/spark-2.4.3-bin-hadoop2.7....cast(typ.IntegerType())) # 此处打印出来还是string print ('births>>>', births) # 构建第一个转换器...encoder.getOutputCol()], outputCol='features' ) print ('featuresCreator:', featuresCreator) # 创建评估器...=0.01, labelCol='INFANT_ALIVE_AT_REPORT') print ('logistic:', logistic) # 创建一个管道 from pyspark.ml...as tune # 使用网格搜索 logistic = cl.LogisticRegression( labelCol='INFANT_ALIVE_AT_REPORT') grid = tune.ParamGridBuilder
2.2 BERT与GPT的结合—BART BART 是一个由facebook研发的Transformer 编码器-编码器 (seq2seq) 模型,具有双向 (类似 BERT) 编码器和自回归 (类似...GPT) 解码器。...智能问答:使用总结技术来生成问题的答案。 文本分析:从大量文本数据中提取出有价值的信息和知识。...num_workers(int,可选,默认为 8)— 当管道将使用DataLoader(传递数据集时,在 Pytorch 模型的 GPU 上)时,要使用的工作者数量。...batch_size(int,可选,默认为 1)— 当管道将使用DataLoader(传递数据集时,在 Pytorch 模型的 GPU 上)时,要使用的批次的大小,对于推理来说,这并不总是有益的,请阅读使用管道进行批处理
数据准备 我们定义了一些测试数据,方便验证函数的有效性;同时对于大多数初学者来说,明白函数的输入是什么,输出是什么,才能更好的理解特征函数和使用特征: df = spark.createDataFrame...当前,真正在搜索引擎等实际应用中广泛使用的是Tf-idf 模型。...Tf-idf 模型的主要思想是:如果词w在一篇文档d中出现的频率高,并且在其他文档中很少出现,则认为词w具有很好的区分能力,适合用来把文章d和其他文章区分开来。...,然后索引数值根据标签出现的频率进行排序。...def StringIndexer(df,inputCol="category",outputCol="categoryVec"): """ 将标签索引化,然后索引数值根据标签出现的频率进行排序
例如,在Databricks,超过 90%的Spark API调用使用了DataFrame、Dataset和SQL API及通过SQL优化器优化的其他lib包。...3.jpg 动态分区裁剪 当优化器在编译时无法识别可跳过的分区时,可以使用"动态分区裁剪",即基于运行时推断的信息来进一步进行分区裁剪。...当编译器无法做出最佳选择时,用户可以使用join hints来影响优化器以便让它选择更好的计划。...增强的Python API:PySpark和Koalas Python现在是Spark中使用较为广泛的编程语言,因此也是Spark 3.0的重点关注领域。...更好的错误处理 对于Python用户来说,PySpark的错误处理并不友好。该版本简化了PySpark异常,隐藏了不必要的JVM堆栈跟踪信息,并更具Python风格化。
读取时按规定好的长度来读取。 2.1 使用LineBasedFrameDecoder 这是Netty内置的一个解码器,对应的编码器是LineEncoder。...//添加编码器,使用默认的符号\n,字符集是UTF-8 ch.pipeline().addLast(new LineEncoder(LineSeparator.DEFAULT, CharsetUtil.UTF...您只需定义一次数据的结构化方式,然后就可以使用特殊生成的源代码,轻松地将结构化数据写入和读取到各种数据流中,并支持多种语言。...第四步:在发送端添加编码器,在接收端添加解码器 客户端添加编码器,对消息进行编码。...意思是:分析protocol消息时,输入意外地在字段中间结束。这可能意味着输入被截断,或者嵌入的消息误报了自己的长度。 其实就是粘包问题,多条数据合并成一条数据了,导致解析出现异常。
T5 模型在多个自然语言理解和生成任务上取得了非常优异的效果,展现了强大的通用性和迁移学习能力。...与 BERT 对比:BERT 是一个encoder模型,主要用于理解类任务,而 T5 是完整的编码器-解码器架构,不仅可以处理理解类任务,还可以生成文本。这使得 T5 在生成类任务中具有显著优势。...与 GPT 对比:GPT 是基于decoder的模型,专注于生成任务,T5 则使用编码器-解码器架构,能够更好地处理输入和输出双向的复杂任务。...num_workers(int,可选,默认为 8)— 当管道将使用DataLoader(传递数据集时,在 Pytorch 模型的 GPU 上)时,要使用的工作者数量。...batch_size(int,可选,默认为 1)— 当管道将使用DataLoader(传递数据集时,在 Pytorch 模型的 GPU 上)时,要使用的批次的大小,对于推理来说,这并不总是有益的,请阅读使用管道进行批处理
num_workers(int,可选,默认为 8)— 当管道将使用DataLoader(传递数据集时,在 Pytorch 模型的 GPU 上)时,要使用的工作者数量。...batch_size(int,可选,默认为 1)— 当管道将使用DataLoader(传递数据集时,在 Pytorch 模型的 GPU 上)时,要使用的批次的大小,对于推理来说,这并不总是有益的,请阅读使用管道进行批处理...如果传递了字符串或字符串列表,则此管道将继续每个提示。或者,可以传递“聊天”(以带有“role”和“content”键的字典列表的形式),或传递此类聊天的列表。...仅当 return_text设置为 True 时才有意义。 clean_up_tokenization_spaces(bool,可选,默认为True)—是否清理文本输出中可能出现的额外空格。...2.3.3 pipeline返回参数 args(str或List[str])——编码器的输入文本。
领取专属 10元无门槛券
手把手带您无忧上云