首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
您找到你想要的搜索结果了吗?
是的
没有找到

3D Imaging Using Extreme Dispersion in Optical Metasurfaces

由于超表面对入射光的相位、偏振和振幅的极端控制,因此具有革新成像技术的潜力。它们依靠增强的光的局部相互作用来实现所需的相位轮廓。由于光的局部相互作用增强,超表面是高度色散的。这种强分散被认为是实现常规超表面成像的主要限制。在这里,我们认为这种强色散为计算成像的设计自由度增加了一个程度,潜在地打开了新的应用。特别是,我们利用超表面的这种强分散特性,提出了一种紧凑、单镜头、被动的3D成像相机。我们的设备由一个金属工程,聚焦不同的波长在不同的深度和两个深度网络,恢复深度和RGB纹理信息从彩色,散焦图像获得的系统。与其他基于元表面的3D传感器相比,我们的设计可以在更大的视场(FOV)全可见范围内运行,并可能生成复杂3D场景的密集深度图。我们对直径为1毫米的金属的模拟结果表明,它能够捕获0.12到0.6米范围内的3D深度和纹理信息。

02

​MambaDFuse 出手就知道有没有 | 模态问题怎么办?特征融合怎么解?速度怎么变快?这就是标杆!

图像融合旨在从多个源图像中结合基本的信息表示,以生成高质量、内容丰富的融合图像。根据成像设备或成像设置的不同,图像融合可以分为多种类型,包括多模态图像融合(MMIF)、数字摄影图像融合和遥感图像融合。红外-可见光图像融合(IVF)和医学图像融合(MIF)是MMIF的两个典型任务,它们对来自所有传感器的跨模态特征进行建模和融合。特别是,红外传感器捕捉热辐射数据,突出显示显著目标,而可见光传感器捕捉反射光信息,生成富含纹理细节的数字图像。IVF旨在整合源图像中的互补信息,生成在突出显著目标的同时保留丰富纹理细节的高对比度融合图像。这些融合图像提供了增强的场景表示和视觉感知,有助于后续的实际视觉应用,如多模态显著性检测、目标检测和语义分割。

01

腾讯多媒体实验室打造H.264编码器,落地腾讯实时音视频

信息时代,利用音视频来获取、交换相关信息早已成为生活中的一种重要方式。疫情的到来使得人与人在物理空间上的交流受阻,也使得诸如云办公、远程会议、线上授课等相关刚性需求随之增加。作为这些应用的基础,实时音视频进一步承担了社会中非常重要的角色,同时也将视频应用的消费趋势从消费互联网向产业互联网延伸发展。 针对上述场景,腾讯多媒体实验室发布了端侧的实时H.264视频编码引擎O264RT,并落地腾讯实时音视频TRTC等诸多产品与业务,在提升用户体验的同时节省带宽成本。在实时应用场景,尤其是云办公时代的屏幕内容场景,O

02

视觉语言模型是偏向于纹理还是形状,我们能否对它们进行引导

今天为大家介绍的是来自Janis Keuper团队的一篇论文。在过去几年里,视觉语言模型(VLMs)极大地改变了计算机视觉模型的格局,为我们开启了一系列激动人心的新应用,从zeroshot图像分类到图像描述再到视觉问题回答。与纯视觉模型不同,它们通过语言提示提供了一种直观的方式来访问视觉内容。这类模型的广泛适用性促使我们去探究它们是否也与人类视觉一致——特别是,它们在多模态融合中是否采纳了人类的视觉偏见,或者它们仅仅继承了纯视觉模型的偏见。一个重要的视觉偏见是纹理与形状之间的偏好,或者说是局部信息对全局信息的主导性。在这篇论文中,作者研究了一系列流行的VLMs中的这种偏见。有趣的是,作者发现VLMs通常比它们的视觉编码器更倾向于形状,这表明通过文本在多模态模型中对视觉偏见进行了一定程度的调整。

01

新知 | 4K/8K超高清时代如何利用媒体处理技术加速媒体数字化升级

新知系列课程第二季来啦!我们将为大家带来全真互联时代下新的行业趋势、新的技术方向以及新的应用场景分享。本期我们邀请了腾讯云音视频技术导师——刘兆瑞,为大家分享媒体处理技术在4K/8K超高清视频处理上的应用。 随着观看设备分辨率的提升以及观看设备不断向高清升级,业界对视频清晰度的要求也日渐增高。中国电子信息产业发展研究院发表的《超高清视频产业发展白皮书(2021年)》宣告了超高清时代的来临。面对4K/8K超高分辨率、超高码率的视频,很多新的痛点问题亟待解决,今天的文章将分享我们在利用媒体处理能力加速媒体数字

01

攻城狮手记 | 既高清又低码?腾讯明眸帮你两者兼得

随着近几年视频行业的井喷,短视频、社交媒体、电商带货、视频会议等泛媒体类应用大规模增长,人们对高画质、低延时的需求愈发强烈。 而腾讯明眸正是聚焦于“极速高清”和“画质重生”两大功能,利用腾讯云领先的编解码和媒体处理技术与AI技术融合打造的音视频技术品牌。在各类媒体业务中,腾讯明眸都能够为用户提供画质更好,码率更低的媒体处理服务。 下面我们就一同来了解一下这个让你能够“鱼与熊掌兼得”的黑科技以及它背后的工程师团队吧! “17年,音视频应用平台开始将关注点转向带宽成本、观看体验。我们也在这个时候开

03

基于化学元素知识图的分子对比学习

本文介绍一篇来自浙江大学计算机科学系、杭州创新中心、杭州西湖生命科学与生物医学实验室等联合发表的文章。该文章构建了一个化学元素知识图(KG)来总结元素之间的微观联系,并提出了一个用于分子表征学习的知识增强对比学习(KCL)框架。KCL由三个模块组成。第一个模块是知识引导图增强,对原有的基于化学元素KG的分子图进行扩充。第二个模块是知识感知图表示,对原始分子图使用通用图编码器来提取分子的表示,并使用知识感知消息传递神经网络(Knowledge-aware Message Passing Neural Network, KMPNN)对增强分子图中的复杂信息进行编码。最后一个模块是一个对比目标,以最大化分子图的这两种视图之间的一致性。

05

极速高清:让视频更小更清晰,迈向高品质视频

| 导语  视频是当前网络媒体主要形式和网络带宽资源的主要消耗者。通过降低分辨率和增加压缩比率,人们可以将视频以较小的网络带宽消耗进行传输,但降质传输的视频画质效果很影响用户观看体验。因此如何让视频以更小的带宽传输,再通过修复增强算法恢复出高清画质,实现“美”的共享,给视频技术提出了新的挑战。在此背景下,极速高清团队以低带宽占用下为用户提供更好的视频体验为目标,提出了包括画质修复与增强、内容自适应参数选择、高质量编码器等一整套视频处理解决方案。其中,在画质增强修复中提出的“AR-SR”方案,在AIIA 2

03
领券