首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

Python中使用deepdiff对比json对象时,对比时如何忽略数组中多个不同对象的相同字段

最近忙成狗了,很少挤出时间来学习,大部分时间都在加班测需求,今天在测一个需求的时候,需要对比数据同步后的数据是否正确,因此需要用到json对比差异,这里使用deepdiff。...一般是用deepdiff进行对比的时候,常见的对比是对比单个的json对象,这个时候如果某个字段的结果有差异时,可以使用exclude_paths选项去指定要忽略的字段内容,可以看下面的案例进行学习:...那么如果数据量比较大的话,单条对比查询数据效率比较低,因此,肯呢个会调用接口进行批量查询,然后将数据转成[{},{},{}]的列表形式去进行对比,那么这个时候再使用exclude_paths就无法直接简单的排除某个字段了...,终于又给我找到了,针对这种情况,可以使用exclude_regex_paths去实现: 时间有限,这里就不针对deepdiff去做过多详细的介绍了,感兴趣的小伙伴可自行查阅文档学习。...这里对比还遇到一个问题,等回头解决了再分享: 就这种值一样,类型不一样的,要想办法排除掉。要是小伙伴有好的方法,欢迎指导指导我。

91820

Seaborn 基本语法及特点

安装 Matplotlib python -m pip install matplotlib 安装 Seaborn pip install seaborn 图类型 Seaborn 提供的可绘制图类型包括...Seaborn 中的数据分布型图绘制函数: 分类数据型图 在面对数据组中具有离散型变量(分类变量)的情况时,我们可使用以 X 轴或 Y 轴作为分类轴的绘图函数来绘制分类数据型图。...在面对按数据子集绘图、分行或分列显示子图和不同类型图组合等绘图要求时,多子图网格绘制功能不但可以一次性可视化展示数据集中各变量的变化情况,而且可以减少绘制复杂图的时间。...FacetGrid() 函数可以实现行、列、色调 3 个维度的数值映射,其中,行、列维度与所得的轴阵列有明显的对应关系,色调变量可被视为沿深度轴的第三维,用不同的颜色绘制不同级别的数据。...在 PairGrid () 函数中,每个行和列都会被分配一个不同的变量,这就导致绘制结果为显示数据集中成对变量间关系的图。这种图也被称为“散点图矩阵”。

27330
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    如何使用Python创建美观而有见地的图表

    作者 | Fabian Bosler 来源 | Medium 在今天的文章中,将研究使用Python绘制数据的三种不同方式。将通过利用《 2019年世界幸福报告》中的数据来做到这一点。...惊叹于Python本身或生态系统中众多令人惊叹的开源库之一的简单性和易用性。熟悉的命令,模式和概念越多,那么所有事情就越有意义。 Matplotlib 使用Python进行绘图的情况恰恰相反。...当从事地理空间可视化工作时遇到了Bokeh。但是,很快意识到,虽然Bokeh与众不同,但它与matplotlib一样复杂。...只需要CSV文件,即可使用Python轻松创建。试试看! 目前的工作流程 最终决定使用Pandas原生绘图进行快速检查,并使用Seaborn生成要在报表和演示文稿中使用的图表(在视觉上很重要)。...—热图 最喜欢的绘图类型之一是热图FacetGrid,即网格每个面上的热图。

    3K20

    基于seaborn绘制多子图

    总体而言,Seaborn为Python用户提供了一种优雅而强大的方式来展示数据,使得数据可视化成为数据科学工作流程中不可或缺的一部分。...是一个多维数据图形接口,通过使用它,我们可以方便地创建基于不同的分面变量的多个图形。...这个函数之所以有这些功能,是因为函数底层使用了FacetGrid来组装这些图形。FacetGrid绘图的x和y参数必须为DataFrame的列的名字。...和tip两个字段绘制,alpha表示散点的透明度第三行:表示添加图例,右侧的smoker(No-Yes);否则不会显示图例legend回归散点图regplotIn 9:g = sns.FacetGrid...["sepal_length", "sepal_width"], hue="species")g.map(sns.scatterplot)g.add_legend()图片上三角、下三角和对角线分别绘制不同类型的图

    68730

    万字长文 | 超全代码详解Python制作精美炫酷图表教程

    生活阶梯(幸福指数)与人均GDP(金钱)正相关的正则图 本文将探讨三种用Python可视化数据的不同方法。...我使用Python进行绘图的经历 ? 图片来源:Krys Amon/Unsplash 大约两年前,我开始更认真地学习Python。...xlim和ylim都最好有一个元组(例如, xlim=(0,5)) 下面来快速浏览一下不同类型的图。...人均GDP与生活阶梯的关系,不同颜色表示不同大洲和人口规模 小提琴图 小提琴图结合了盒状图和核密度估计值。它的作用类似于盒状图,显示了定量数据在分类变量之间的分布,以便对这些分布进行比较。...FacetGrid— 热图 我最喜欢的一种绘图类型就是FacetGrid的热图,即每一个网格都有热图。

    3.2K10

    Python Seaborn (5) 分类数据的绘制

    对于其他数据类型,字符串类型的类别将按照它们在 DataFrame 中显示的顺序进行绘制,但是数组类别将被排序: ?...除了颜色之外,还可以使用不同的散点图标记来使黑色和白色的图像更好地绘制。 您还可以完全控制所用的颜色: ?...当在每个类别中有多个观察值时,它还使用引导来计算估计周围的置信区间,并绘制使用误差条: ? 条形图的特殊情况是当您想要显示每个类别中的观察次数,而不是计算第二个变量的统计量。...这使得很容易看出主要关系如何随着第二个变量的变化而变化,因为你的眼睛很好地收集斜率的差异: ? 为了使能够在黑白中重现的图形,可以使用不同的标记和线条样式来展示不同 hue 类别的层次: ?...重要的是要注意,你也可以直接使用 boxplot() 和 FacetGrid 来制作这个图。

    4K20

    seaborn的介绍

    以下是seaborn提供的一些功能: 面向数据集的API,用于检查多个变量之间的关系 专门支持使用分类变量来显示观察结果或汇总统计数据 可视化单变量或双变量分布以及在数据子集之间进行比较的选项 不同种类因变量的线性回归模型的自动估计和绘图...与直接使用matplotlib时不同,没有必要将变量转换为可视化的参数(例如,用于每个类别的特定颜色或标记)。那个翻译是由seaborn自动完成的。这使用户可以专注于他们希望情节回答的问题。...跨可视化的API抽象 没有通用的可视化数据的最佳方法。不同的问题最好通过不同类型的可视化来回答。Seaborn试图在不同的可视化表示之间切换,可以使用相同的面向数据集的API进行参数化。...为了做这些事情,他们使用了seaborn FacetGrid。 每个不同的图形级别图kind将特定的“轴级”功能与FacetGrid对象组合在一起。...您还可以通过输出类型区分这两个类:axis-level函数返回matplotlib axes,而figure-level函数返回FacetGrid。

    4K20

    数据可视化基础与应用-04-seaborn库从入门到精通01-02

    请注意,我们如何仅提供变量的名称及其在图中的角色。与直接使用matplotlib不同,不需要根据颜色值或标记代码指定绘图元素的属性。...没有普遍的最佳方法来可视化数据。不同的问题最好由不同的情节来回答。通过使用一致的面向数据集的API, Seaborn可以轻松地在不同的可视化表示之间切换。...当在seaborn中使用轴级函数时,同样的规则也适用:图的大小由它所在的图形的大小和该图中的轴布局决定。...在使用图形级函数时,有几个关键的区别。首先,函数本身具有控制图形大小的参数(尽管这些实际上是管理图形的底层FacetGrid的参数)。...教程文档主要使用图形级函数,因为它们生成的图形稍微清晰一些,我们通常建议在大多数应用程序中使用它们。当你需要制作一个复杂的、独立的、包含多种不同情节类型的人物时,它们就不是一个好的选择。

    22410

    我用Python的Seaborn库,绘制了15个超好看图表!

    同时也保持着与Python生态系统的高度兼容性,可以轻松集成到Python数据分析以及机器学习的工作流程中。 今天,小F就给大家介绍如何使用Seaborn制作15种不同类型的可视化图表。...热力图 热力图是数据的二维可视化表示,使用颜色来显示变量的值。 热力图经常用于显示数据集中的各种变量的关联关系,使用corr方法来实现。...网格中的每个图都可以定制为不同类型的图,例如散点图、直方图或箱形图,具体取决于要可视化的数据。 在这里,制作了每个物种花瓣长度的图表。...联合分布图 联合分布图将两个不同类型的图表组合在一个表中,展示两个变量之间的关系(二元关系)。...分类图 cat图(分类图缩写)是Seaborn中的一种图表,可以用来可视化数据集中一个或多个分类变量与连续变量之间的关系。 它可用于显示分布、比较组或显示不同变量之间的关系。

    84330

    数据可视化基础与应用-04-seaborn库从入门到精通03

    They are: 将不同的分类情节类型视为属于三个不同的家族是有帮助的,我们将在下面详细讨论。...这些族表示使用不同粒度级别的数据。在决定使用哪种方法时,你必须考虑你想要回答的问题。统一的API可以方便地在不同类型之间切换,并从多个角度查看数据。...请记住,这个函数是上面每个函数的高级接口,因此我们将在显示每种类型的图表时引用它们,并保留更详细的特定于类型的API文档。...This is built into displot(): 显示边际分布的一种不那么突兀的方法是使用“地毯”图,它在图的边缘添加一个小标记来表示每个单独的观察结果。...理解FacetGrid和PairGrid之间的区别是很重要的。在前者中,每个方面都表现出相同的关系,条件是其他变量的不同水平。在后者中,每个图都显示了不同的关系(尽管上三角形和下三角形将有镜像图)。

    59110

    70个精美图快速上手seaborn!

    图片 Seaborn简介 Seaborn是一个基于Python的数据可视化库,它建立在Matplotlib之上,提供了一种更简单、更美观的方式来创建统计图形。...以下是Seaborn库的一些主要特点: 美观的默认样式:Seaborn通过提供现成的样式和颜色主题,使得创建各种类型的图形变得更加简单。它的默认样式经过精心设计,使得图表具有更高的可读性和美观度。...数据集可视化:Seaborn还包含一些内置的示例数据集,这些数据集可以直接在库中使用。你可以使用这些数据集来快速生成演示图表,同时也可以将它们作为学习和实践的基础。...多变量数据可视化:Seaborn提供了一些强大的工具来可视化多变量数据。你可以使用Seaborn绘制矩阵图、热力图、聚类图等,以揭示不同变量之间的关系和模式。...plt.show() 图片 分布图sns.displot 基础分布图 默认情况下是统计DataFrame中某个属性中不同取值出现的次数:以柱状图的形式显示 In 41: tips.groupby("

    2.6K150

    Seaborn从零开始学习教程(四)

    如果你的数据是 pandas 的分类数据类型,那么就是使用默认的分类数据顺序,如果是其他的数据类型,字符串类型的类别将按照它们在DataFrame中显示的顺序进行绘制,但是数组类别将被排序: sns.swarmplot...对于箱型图来说,使用 hue 参数的假设是这个变量嵌套在x或者y轴内。所以默认的情况下,hue 变量的不同类型值会保持偏置状态(两类或几类数据共同在x轴数据类型的一个类中),就像上面那个图所示。...当在每个类别中有多个类别时(使用了 hue),它可以使用引导来计算估计的置信区间,并使用误差条来表示置信区间: sns.barplot(x="sex", y="survived", hue="class...为了使能够更好的显示,可以使用不同的标记和线条样式来展示不同 hue 类别的层次: sns.pointplot(x="class", y="survived", hue="sex", data=titanic...你也可以直接使用 boxplot() 和 FacetGrid 来制作这个图。

    1.8K20

    seaborn从入门到精通03-绘图功能实现05-构建结构化的网格绘图

    在研究多维数据时,一种有用的方法是在数据集的不同子集上绘制同一图表的多个实例。这种技术有时被称为“格子”或“格子”绘图,它与“小倍数”的思想有关。它允许查看者快速提取关于复杂数据集的大量信息。...当您希望在数据集的子集中分别可视化变量的分布或多个变量之间的关系时,FacetGrid类非常有用。FacetGrid最多可以用三个维度绘制:row, col, and hue。...前两个与得到的轴数组有明显的对应关系;可以将色调变量看作是沿着深度轴的第三维度,其中不同的层次用不同的颜色绘制。...relplot()、displot()、catplot()和lmplot()中的每一个都在内部使用该对象,并在完成时返回该对象,以便用于进一步调整。...理解FacetGrid和PairGrid之间的区别是很重要的。在前者中,每个方面都表现出相同的关系,条件是其他变量的不同水平。在后者中,每个图都显示了不同的关系(尽管上三角形和下三角形将有镜像图)。

    21920

    seaborn从入门到精通03-绘图功能实现02-分类绘图Categorical plots

    在关系图教程中,我们看到了如何使用不同的可视化表示来显示数据集中多个变量之间的关系。在示例中,我们关注的主要关系是两个数值变量之间的情况。...They are: 将不同的分类情节类型视为属于三个不同的家族是有帮助的,我们将在下面详细讨论。...这些族表示使用不同粒度级别的数据。在决定使用哪种方法时,你必须考虑你想要回答的问题。统一的API可以方便地在不同类型之间切换,并从多个角度查看数据。...请记住,这个函数是上面每个函数的高级接口,因此我们将在显示每种类型的图表时引用它们,并保留更详细的特定于类型的API文档。...hue:指定另一个分类变量,相当于给绘图加上一维,不同颜色表示不同的分类。 row, col:指定用哪个变量分行或分列展示。 col_wrap:分列时展示的最大列数。

    38820

    python数据科学系列:seaborn入门详细教程

    默认为scatter类型。 relplot 仍以鸢尾花数据集为例,绘制不同种类花的两变量散点图如下: ? scatterplot 也可实现同样的散点图效果: ?...在hue分类仅有2个取值时,还可通过设置split参数实现左右数据合并显示。 ? 3....注:当x轴分类变量为连续日期数据时,选用pointplot得到的绘图意义更为明确;而对于其他分类型变量,则选用barplot更为合适。...factorplot factorplot是catplot的前身,二者实现功能完全一致,现已被后者更名替代,官方不再推荐使用。...相关阅读: 临行在即,分享一个自己写的sklearn源码库 python数据科学系列:pandas入门详细教程 python数据科学系列:matplotlib入门详细教程 python数据科学系列:numpy

    14.5K68

    用Seaborn实现高级数据分析与可视化

    在本文中,我们将探讨如何使用Seaborn进行数据分析与可视化,通过实际案例展示如何通过视觉化揭示数据背后的故事。安装与准备工作在开始之前,请确保你的Python环境中已经安装了必要的库。...# 查看数据集的基本信息print(df.info())# 显示数据集的前几行print(df.head())输出结果会告诉我们数据集中各列的类型、非空值数量、数据的样本结构等基本信息。...箱线图能有效显示数据的分布情况、中心趋势及异常值。2....# 使用FacetGrid展示小费金额与账单金额的关系,按性别和吸烟分组g = sns.FacetGrid(df, col="sex", row="smoker", margin_titles=True...通过改变主题和调色板,能够有效增强图表的视觉吸引力和信息传递效果。2. 使用FacetGrid进行条件绘图FacetGrid是Seaborn的强大工具之一,允许我们在多个条件下绘制一组图表。

    22320

    Python数据可视化入门教程

    数据可视化是为了使得数据更高效地反应数据情况,便于让读者更高效阅读,通过数据可视化突出数据背后的规律,以此突出数据中的重要因素,如果使用Python做数据可视化,建议学好如下这四个Python数据分析包...Pandas 官网https://www.pypandas.cn/ Pandas 是 Python的核心数据分析支持库,提供了快速、灵活、明确的数据结构,旨在简单、直观地处理关系型、标记型数据,广泛应用于数据分析领域...灵活的分组功能:group by数据分组; 直观地合并功能:merge数据连接; 灵活地重塑功能:reshape数据重塑; pandas库不仅可以做一些数据清洗的工作,还可以使用pandas作图,并且做图时...B') plt.plot(x,y3,label='C') plt.plot(x,y4,label='D') plt.legend()#显示图例 多表绘制 下面介绍在一张图表的不同位置绘制不同的线型...绘制多行图 将变量按照多行的形式进行绘制,使用sns.FacetGrid命令。

    2.4K40

    数据可视化Seaborn入门介绍

    http://seaborn.pydata.org/examples/index.html Seaborn是基于matplotlib的图形可视化python包。...Seaborn是在matplotlib的基础上进行了更高级的API封装,从而使得作图更加容易,在大多数情况下使用seaborn能做出很具有吸引力的图,而使用matplotlib就能制作具有更多特色的图。...lmplot lmplot=regplot+FacetGrid,也是用于绘制回归图表,但功能相比更为强大,除了增加hue参数支持分类回归外,还可添加row和col参数(二者均为FacetGrid中的常规参数...在hue分类仅有2个取值时,还可通过设置split参数实现左右数据合并显示。 3....注:当x轴分类变量为连续日期数据时,选用pointplot得到的绘图意义更为明确;而对于其他分类型变量,则选用barplot更为合适。

    2.8K20
    领券