首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

使用Keras进行深度学习:(一)Keras 入门

笔者使用的是基于Tensorflow为计算后台。接下来将介绍一些建模过程的常用层、搭建模型和训练过程,而Keras中的文字、序列和图像数据预处理,我们将在相应的实践项目中进行讲解。...由于这三种的使用和参数都基本相同,所以主要以处理图像数据的Conv2D进行说明。...Keras中设定了两类深度学习的模型,一类是序列模型(Sequential类);另一类是通用模型(Model 类)。下面我们通过搭建下图模型进行讲解。 ?...图 4:通用模型实现 使用通用模型,首先要使用Input函数将输入转化为一个tensor,然后将每一层用变量存储后,作为下一层的参数,最后使用Model类将输入和输出作为参数即可搭建模型。...图 5:优化和训练实现 最后用以下图片总结keras的模块,下一篇文章我们将会使用keras来进行项目实践,从而更好的体会Keras的魅力。 ?

1.1K60
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    Keras 模型中使用预训练的 gensim 词向量和可视化

    Keras 模型中使用预训练的词向量 Word2vec,为一群用来产生词嵌入的相关模型。这些模型为浅而双层的神经网络,用来训练以重新建构语言学之词文本。...https://zh.wikipedia.org/wiki/Word2vec 在这篇 [在Keras模型中使用预训练的词向量](https://keras-cn.readthedocs.io/en/latest...非常方便,直接使用 Keras 封装好的 Tensorboard 回调 即可。...直接可视化 word2vec 模型 上面的可视化方法需要在 keras 建模并且训练,如果想直接可视化,可以利用 w2v_visualizer.py 这个脚本,使用方法很简单 python3 w2v_visualizer.py...模型路径> 参考 Vector Representations of Words 在Keras模型中使用预训练的词向量 TensorBoard: Embedding Visualization

    1.4K30

    对比复现34个预训练模型,PyTorch和Keras你选谁?

    本文主要从抽象程度和性能两个方面对比 PyTorch 与 Keras,并介绍了一个新的基准,它复现并对比了两个框架的所有预训练模型。...在 Keras 和 PyTorch 基准项目中,MIT 在读博士 Curtis G. Northcutt 复现了 34 个预训练模型。...例如,项目作者表示 ResNet 架构的模型使用 PyTorch 要比 Keras 效果好,Inception 架构的模型使用 Keras 又要比 PyTorch 好。...例如在 PyTorch 1.0 中,编译工具 torch.jit 就包含一种名为 Torch Script 的语言,它是 Python 的子语言,开发者使用它能进一步对模型进行优化。...一些预训练的 Keras 模型在部署到某个服务器或与其他 Keras 模型一起依次运行时会产生不一致或较低的准确率。 3. 使用批归一化(BN)的 Keras 模型可能并不可靠。

    85750

    使用Python和Keras进行血管分割

    在整个文章中使用DRIVE(数字视网膜图像用于血管提取)数据集进行所有实验。...直觉 / 假设:相邻像素值对于对每个像素(i,j)进行预测很重要,因此应该考虑上下文。预测不依赖于图像上的特定位置,因此分类器应具有一些平移不变性。 解决方案:使用CNN!...将使用U-net架构进行血管分割。它是一种广泛用于语义分割任务的体系结构,尤其是在医学领域。 型号: ? U-Net U-net架构是编码器 - 解码器,在编码器和解码器之间具有一些跳过连接。...该架构的主要优点是能够在对像素进行预测时考虑更广泛的上下文。这要归功于上采样操作中使用的大量通道。 输入图像处理: 在将其反馈到CNN之前应用这一系列处理步骤。...将使用AUC ROC度量比较这三个模型,将仅在评估中考虑视网膜掩模内的像素(意味着图像圆周围的黑色边缘将不计算)。

    2.4K20

    使用Keras上的分段模型和实施库进行道路检测

    与segmentation_models库一起,它为Unet和其他类似unet的架构提供了数十个预训练。有关完整代码,请访问Github。...__(生成的批处理用于送入网络) 使用自定义生成器的一个主要优点是,可以使用拥有的每种格式数据,并且可以执行任何操作 - 只是不要忘记为keras生成所需的输出(批处理)。...不要忘记对它们进行排序,因为对于self.image_filenames [i]相应的掩码应该是self.mask_names [i]。...它有助于防止过度拟合并使模型更加健壮。 有很多用于此类任务的库:imaging,augmentor,solt,keras / pytorch的内置方法,或者可以使用OpenCV库编写自定义扩充。...还有很多其他选择可供尝试 encoder_weights - 使用imagenet权重加速训练 encoder_freeze:如果为True,则将编码器(骨干模型)的所有层设置为不可训练的。

    1.8K20

    对比复现34个预训练模型,PyTorch和Keras你选谁?

    本文主要从抽象程度和性能两个方面对比 PyTorch 与 Keras,并介绍了一个新的基准,它复现并对比了两个框架的所有预训练模型。...在 Keras 和 PyTorch 基准项目中,MIT 在读博士 Curtis G. Northcutt 复现了 34 个预训练模型。...例如,项目作者表示 ResNet 架构的模型使用 PyTorch 要比 Keras 效果好,Inception 架构的模型使用 Keras 又要比 PyTorch 好。...例如在 PyTorch 1.0 中,编译工具 torch.jit 就包含一种名为 Torch Script 的语言,它是 Python 的子语言,开发者使用它能进一步对模型进行优化。...一些预训练的 Keras 模型在部署到某个服务器或与其他 Keras 模型一起依次运行时会产生不一致或较低的准确率。 3. 使用批归一化(BN)的 Keras 模型可能并不可靠。

    1.2K20

    keras doc 4 使用陷阱与模型

    本文摘自http://keras-cn.readthedocs.io/en/latest/ Keras使用陷阱 这里归纳了Keras使用过程中的一些常见陷阱和解决方法,如果你的模型怎么调都搞不对,或许你有必要看看是不是掉进了哪个猎人的陷阱...卷积核与所使用的后端不匹配,不会报任何错误,因为它们的shape是完全一致的,没有方法能够检测出这种错误。 在使用预训练模型时,一个建议是首先找一些测试样本,看看模型的表现是否与预计的一致。...如需对卷积核进行转换,可以使用utils.np_utils.kernel_convert,或使用utils.layer_utils.convert_all_kernels_in_model来对模型的所有卷积核进行转换...向BN层中载入权重 如果你不知道从哪里淘来一个预训练好的BN层,想把它的权重载入到Keras中,要小心参数的载入顺序。...说明~赠人玫瑰,手有余香,前人踩坑,后人沾光,有道是我不入地狱谁入地狱,愿各位Keras使用者积极贡献Keras陷阱。

    1.2K10

    使用LSTM模型预测股价基于Keras

    本期作者:Derrick Mwiti 本期翻译:HUDPinkPig 未经授权,严禁转载 编者按:本文介绍了如何使用LSTM模型进行时间序列预测。...特征归一化 从以前使用深度学习模型的经验来看,我们需要进行数据归一化以获得最佳的测试表现。本文的例子中,我们将使用Scikit- Learn的MinMaxScaler函数将数据集归一到0到1之间。...的一些模型来构建LSTM 1、顺序初始化神经网络 2、添加一个紧密连接的神经网络层 3、添加长短时记忆层(LSTM) 4、添加dropout层防止过拟合 from keras.models import...接着,我们使用目前流行的adam优化器编译模型,并用均方误差(mean_squarred_error)来计算误差。最后,模型运行100epoch,设置batch大小为32。...读者可以自行测试这些方法的准确率,并与Keras LSTM的测试结果进行比较。

    4.1K20

    Keras模型转TensorFlow格式及使用

    由于方便快捷,所以先使用Keras来搭建网络并进行训练,得到比较好的模型后,这时候就该考虑做成服务使用的问题了,TensorFlow的serving就很合适,所以需要把Keras保存的模型转为TensorFlow...Keras模型转TensorFlow 其实由于TensorFlow本身以及把Keras作为其高层简化API,且也是建议由浅入深地来研究应用,TensorFlow本身就对Keras的模型格式转化有支持,所以核心的代码很少...模型是一个包含了网络结构和权重的h5文件,那么使用下面的命令就可以了: python keras_to_tensorflow.py --input_model="path/to/keras/model.h5...此外作者还做了很多选项,比如如果你的keras模型文件分为网络结构和权重两个文件也可以支持,或者你想给转化后的网络节点编号,或者想在TensorFlow下继续训练等等,这份代码都是支持的,只是使用上需要输入不同的参数来设置...使用TensorFlow模型 转换后我们当然要使用一下看是否转换成功,其实也就是TensorFlow的常见代码,如果只用过Keras的,可以参考一下: #!

    1.2K20

    使用Python,Keras和OpenCV进行实时面部检测

    face_locations函数有两种可使用两种方法进行人脸检测:梯度方向的Histrogram(HOG)和C onvolutional神经网络(CNN)。由于时间限制 ,选择了HOG方法。...face_encodings函数是一个预训练的卷积神经网络,能够将图像编码为128个特征的向量。这些向量的信息足够以区分两个不同的人。最后,使用compare_faces计算两个嵌入向量之间的距离。...选择的模型是LeNet-5,该模型已在 Closed Eyes In The Wild (CEW) 数据集中进行了训练。它由大小约为24x24的4800眼图像组成。...每次检测到眼睛时,我们都会使用模型预测其状态,并跟踪每个人的眼睛状态。因此,借助以下功能,可使检测眨眼变得很容易,该功能尝试在眼睛状态历史记录中查找闭合-闭合-闭合模式。...我们选择使用OpenCV预训练的Haar级联分类器执行这些任务。

    86620

    使用transformer BERT预训练模型进行文本分类 及Fine-tuning

    背景 本博客将会记录使用transformer BERT模型进行文本分类过程,该模型以句子为输入(影评),输出为1(句子带有积极情感)或者0(句子带有消极情感);模型大致结构如下图所示,这里就用的是上述所说的...加载数据集与预训练模型 首先引入需要使用的lib以及数据集,这里使用的是SST影评数据集 import numpy as np import pandas as pd from sklearn.model_selection...[fdnvho677g.png] 如上图所示,句子输入至模型之前会进行tokenize 第一步,使用BERT 分词器将英文单词转化为标准词(token),如果是中文将进行分词; 第二步,加上句子分类所需的特殊标准词...使用BERT预训练模型 现在,我们需要从填充好的标记词矩阵中获得一个张量,作为DistilBERT的输入。...预训练模型的模型结构是为预训练任务设计的,所以显然的,如果我们要在预训练模型的基础上进行再次的反向传播,那么我们做的具体领域任务对网络的设计要求必然得和预训练任务是一致的。

    10.4K21

    使用transformer BERT预训练模型进行文本分类 及Fine-tuning

    背景 本博客将会记录使用transformer BERT模型进行文本分类过程,该模型以句子为输入(影评),输出为1(句子带有积极情感)或者0(句子带有消极情感);模型大致结构如下图所示,这里就用的是上述所说的...加载数据集与预训练模型 首先引入需要使用的lib以及数据集,这里使用的是SST影评数据集 import numpy as np import pandas as pd from sklearn.model_selection...[fdnvho677g.png] 如上图所示,句子输入至模型之前会进行tokenize 第一步,使用BERT 分词器将英文单词转化为标准词(token),如果是中文将进行分词; 第二步,加上句子分类所需的特殊标准词...使用BERT预训练模型 现在,我们需要从填充好的标记词矩阵中获得一个张量,作为DistilBERT的输入。...预训练模型的模型结构是为预训练任务设计的,所以显然的,如果我们要在预训练模型的基础上进行再次的反向传播,那么我们做的具体领域任务对网络的设计要求必然得和预训练任务是一致的。

    4.3K41

    使用Keras进行深度学习:(六)GRU讲解及实践

    因为r_t是由0到1的向量组成的,因此,进行Hadamard乘积的意义就在于使用重置门决定在当前记忆内容中要遗忘多少上一时刻隐藏状态的内容,正如重置门处描述,值接近于0说明该信息被遗忘,接近于1则保留该信息...记忆内容就是GRU记录到的所有重要信息,类似于LSTM中的细胞状态,比如在语言模型中,可能保存了主语单复数,主语的性别,当前时态等所有记录的重要信息。...在此过程,使用更新门,一方面,如公式第一项,它决定了上一个时刻的h_(t-1)中多少信息在此时刻隐藏单元h_t需要保留,另一方面,如公式的第二项,通过(1-z_j)表示那些需要遗忘的信息,用此时刻的记忆内容中相应的内容进行更新...比如在语言模型中,在当前时刻可能我们只需要知道当前时态和主语单复数就可以确定当前动词使用什么时态,而不需要其他更多的信息。...二、Keras实现GRU 在这里,同样使用Imdb数据集,且使用同样的方法对数据集进行处理,详细处理过程可以参考《使用Keras进行深度学习:(五)RNN和双向RNN讲解及实践》一文。

    1.6K30

    使用Keras进行深度学习(二): CNN讲解及实践

    本文将通过讲解CNN的介绍以及使用keras搭建CNN常用模型LeNet-5实现对MNist数据集分类,从而使得读者更好的理解CNN。 1.CNN的介绍 CNN是一种自动化提取特征的机器学习模型。...第一种是Keras.datasets库中有mnist数据集,直接调用即可,但是由于需要Keras指定地址下载数据集,速度较慢,最好先下载;第二种是使用struct库函数解析数据集,比较麻烦,但是也可以试试...图8:评估模型 最终在测试集的准确率可以达到99.7%。 通过一个简单项目的实现,既可以帮助我们进一步了解CNN,又可以熟悉Keras应用。最终模型还可以保存到本地,便于下次使用。 ?...keras.applications库中有许多已经训练好的模型,我们可以对已有的模型进行一些修改得到我们想要的模型,从而提高模型搭建和训练的效率。...另外,当我们的数据不足的时候,使用迁移学习思想也是一个很好的想法。在下图,将简单的通过迁移学习实现VGG16。但是由于VGG16模型要求输入为RGB图像,所以需要使用opencv模块对图像进行处理。

    1.2K40

    NLP--加载与使用预训练模型

    ,只需要在自己处理的目标数据上,尽量遍历所有可用的模型对比得到最优效果即可. 2.加载与使用预训练模型的步骤 第一步: 确定需要加载的预训练模型并安装依赖包....第四步: 使用模型获得输出结果. 2.1确定需要加载的预训练模型并安装依赖包 在使用工具加载模型前需要安装必备的依赖包 pip install tqdm boto3 requests regex sentencepiece...这里的'头'是指模型的任务输出层, 选择加载不带头的模型, 相当于使用模型对输入文本进行特征表示....如使用'分类模型头', 则输出尺寸为(1,2)的张量, 用于进行分类任务判定结果. 3.使用不同的模型获得输出结果 3.1使用不带头的模型输出 def demo24_3_load_AutoModel(...不带头的模型输出结果的尺寸: torch.Size([1, 9, 768]) 3.2使用带有语言模型头的模型进行输出 def demo24_4_load_AutoLM(): # 1 加载 tokenizer

    10710

    使用Keras创建一个卷积神经网络模型,可对手写数字进行识别

    Keras是一个使用通用深度学习框架的API,并且可以更容易地构建深度学习模型。它还减少了代码的复杂性。我们可以编写更短的代码来在Keras中实现同样的目的。...同样,相同的Keras代码可以在不同的平台上运行,比如TensorFlow或Theano。你所需要的只是更改配置,以切换深度学习框架。在本文中,我们将使用Keras来创建一个卷积神经网络模型。...首先,我们将导入所需的Keras库: import keras from keras.datasets import mnist from keras.models import Sequential...(x_train, y_train), (x_test, y_test) = mnist.load_data() 第三,Keras要求我们在3D矩阵上进行输入特征的工作。...最后得分 最后,我创建了具有以下配置的模型: batch_size = 250 epochs = 10 因此,图像识别研究将会被卷积神经网络进一步发展。

    1K30
    领券