首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
您找到你想要的搜索结果了吗?
是的
没有找到

联合使用EEG电极和溯源空间特征实现精神分裂症的机器学习诊断

传统的精神分裂症(SZ)诊断往往采用问卷调查的方式进行,医生会依据一定的标准(如DSM-5)询问患者一系列问题,以此来判定患者是否符合SZ的标准。但是这种传统的诊断方式往往具有一定的主观性,如患者可能会隐藏或可以回避一些问题,使得诊断出现一定的偏差。因此,研究者一直致力于寻找客观、定量的方法来实现SZ的分类和诊断。研究者采用EEG/ERP技术发现,SZ患者在某些任务中的ERP成分、功能连接或某些频段的振荡活动等都会出现异常。一些研究者尝试把上述EEG的标志物与机器学习结合起来,实现SZ的诊断和分类。比如说,有研究者利用Oddball任务诱发的ERP成分的幅值作为特征值,实现了SZ高达79%的诊断正确率。但是,上述这些研究都是利用电极水平(sensor-level)的特征来进行分类,而利用溯源水平(source-level)特征来对SZ进行机器学习诊断的研究似乎还很少。本次,笔者在这里分享一篇题目为《Machine-learning-based diagnosis of schizophrenia using combined sensor-level and source-level EEG features》的研究论文,该论文发表于Schizophrenia Research杂志,其联合使用EEG电极和溯源空间特征实现精神分裂症的机器学习诊断。 材料与方法 1.被试。从医院募集34个SZ患者和34个健康人,被试的临床资料如表1所示。

00

使用CNN-LSTM混合深度学习分类基于MUSE采集的运动想象EEG信号

脑机接口(BrainComputer Interfaces)技术是将人脑与外部设备建立起直接的通路,在智能助残、人机工程、神经康复训练等领域有巨大的应用潜力。随着技术发展,BCI不仅可以用于运动障碍患者,甚至可以用于健康人群以增强他们的行动能力。为了将BCI应用进一步推广,本文采用了一种便携、低侵入性的头带式设备来采集被试主动式运动想象的脑电信号,并使用卷积神经网络和长短时记忆网络混合对脑电信号进行分类识别。研究结果表明,配合混合神经网络,这种低侵入式的检测方法依然可以达到很高的运动意图识别准确率(96.5%)。该论文是一篇结合了实验方案、采集设备、深度学习算法的综合性原创BCI研究论文,既可以用于BCI行业入门学习,了解BCI的一般研究方法,也可以为BCI领域内研究人员提供新方法的参考。

03

​脑机接口(BCI)与人工智能:仅用思想来控制周围事物是什么感觉?

如今高新技术实验室里,每天都在上演人机交互的过程,最常见的,残疾人通过训练自己的思想来控制机器人的四肢。而人类期望有一天能够用我们的思想操纵宇宙飞船,将我们的大脑下载到电脑上,并最终创造出半机器人。特斯拉和SpaceX的首席执行官收购了Neuralink公司,旨在建立大脑和计算机之间的直接联系。随着过去几十年科技的迅猛发展,人类和机器之间的界限已经开始缩小。在机器的帮助下,科幻小说中壮观的精神控制世界慢慢向现实靠近。目前这些新技术的前沿是脑机接口(BCI)和人工智能(AI),虽然BCIs和AI以往是相互独立开发和应用的。但是,现在越来越多的科学家们希望将两者结合起来,使脑电信号操纵外部设备过程更高效。

01

EEGNet:一个小型的卷积神经网络,用于基于脑电的脑机接口

脑机接口(BCI)利用神经活动作为控制信号,可以与计算机直接通信。这种神经信号通常从各种研究充分的脑电图(EEG)信号中选择。对于给定的脑机接口(BCI)范式,特征提取器和分类器是针对其所期望的脑电图控制信号的不同特征而定制的,这限制了其对特定信号的应用。卷积神经网络(Convolutional neural networks, CNNs)已被用于计算机视觉和语音识别中进行自动特征提取和分类,并成功地应用于脑电信号识别中;然而,它们主要应用于单个BCI范例,因此尚不清楚这些架构如何推广到其他范例。在这里,我们想问的是,我们是否可以设计一个单一的CNN架构来准确地分类来自不同BCI范式的脑电图信号,同时尽可能小型的方法。在这项工作中,我们介绍了EEGNet,一个小型的卷积神经网络为基于脑电图的BCI。我们介绍了深度卷积和可分离卷积的使用来构建脑电图特定模型,该模型封装了众所周知的脑机接口脑电图特征提取概念。我们比较了EEGNet,包括被试内和跨被试分类,以及目前最先进的四种BCI范式:P300视觉诱发电位、错误相关负波(ERN)、运动相关皮层电位(MRCP)和感觉运动节律(SMR)。我们表明,当在所有测试范例中只有有限的训练数据可用时,EEGNet比参考算法更好地泛化,并取得了相当高的性能。此外,我们还演示了三种不同的方法来可视化训练过的EEGNet模型的内容,以支持对学习到的特征的解释。意义:我们的结果表明,EEGNet足够鲁棒,可以在一系列BCI任务中学习各种各样的可解释特征。本文发表在Journal of Neural Engineering杂志。

03

基于机器学习的脑电病理学诊断

机器学习(Machine learning, ML)方法有可能实现临床脑电(Electroencephalography, EEG)分析的自动化。它们可以分为基于特征的方法(使用手工制作的特征)和端到端的方法(使用学习的特征)。以往对EEG病理解码的研究通常分析了有限数量的特征、解码器或两者兼而有之。对于I)更详细的基于特征的EEG分析,以及II)两种方法的深入比较,我们首先开发了一个全面的基于特征的框架,然后将该框架与最先进的端到端方法进行比较。为此,我们将提出的基于特征的框架和深度神经网络(包括EEG优化的时间卷积网络(temporal convolutional network, TCN))应用于病理性和非病理性EEG分类。为了进行强有力的比较,我们选择了天普大学医院(Temple University Hospital, TUH)的异常EEG语料库(2.0.0版),其中包含大约3000个EEG记录。结果表明,所提出的基于特征的解码框架可以达到与现有深度神经网络相同的精度。我们发现这两种方法的准确率都在81%到86%的范围内。此外,可视化和分析表明,这两种方法使用了相似的数据方面,例如,在颞叶电极位置处的delta和theta波段功率。我们认为,由于临床标签之间的不完全一致性,目前的二值EEG病理解码器的准确率可能达到90%左右,并且这种解码器已经在临床上有用,例如在临床EEG专家很少的领域。我们提出的基于特征的框架是开源的,从而为EEG机器学习研究提供了一个新的工具。本文发表在Neuroimage杂志。

02

用于 BCI 信号分类的深度特征的 Stockwell 变换和半监督特征选择

在过去的几年里,运动图像 (MI) 脑电图 (EEG) 信号的处理已被吸引到开发脑机接口 (BCI) 应用程序中,因为这些信号的特征提取和分类由于其固有的复杂性和倾向于人为它们的属性。BCI 系统可以提供大脑和外围设备之间的直接交互路径/通道,因此基于 MI EEG 的 BCI 系统对于控制患有运动障碍的患者的外部设备似乎至关重要。目前的研究提出了一种基于三阶段特征提取和机器学习算法的半监督模型,用于 MI EEG 信号分类,以通过更少的深度特征来提高分类精度,以区分左右手 MI 任务。在所提出的特征提取方法的第一阶段采用斯托克韦尔变换从一维 EEG 信号生成二维时频图 (TFM)。接下来,应用卷积神经网络 (CNN) 从 TFM 中寻找深度特征集。然后,使用半监督判别分析(SDA)来最小化描述符的数量。最后,五个分类器的性能,包括支持向量机、判别分析、在所提出的特征提取方法的第一阶段采用斯托克韦尔变换从一维 EEG 信号生成二维时频图 (TFM)。接下来,应用卷积神经网络 (CNN) 从 TFM 中寻找深度特征集。然后,使用半监督判别分析(SDA)来最小化描述符的数量。最后,五个分类器的性能,包括支持向量机、判别分析、在所提出的特征提取方法的第一阶段采用斯托克韦尔变换从一维 EEG 信号生成二维时频图 (TFM)。接下来,应用卷积神经网络 (CNN) 从 TFM 中寻找深度特征集。然后,使用半监督判别分析(SDA)来最小化描述符的数量。最后,五个分类器的性能,包括支持向量机、判别分析、k近邻、决策树、随机森林,以及它们的融合比较。SDA 和提到的分类器的超参数通过贝叶斯优化进行优化,以最大限度地提高准确性。所提出的模型使用 BCI 竞赛 II 数据集 III 和 BCI 竞赛 IV 数据集 2b 进行验证。所提出方法的性能指标表明其对 MI EEG 信号进行分类的效率。

02

3D卷积神经网络从神经生理学高度解码复杂大脑活动

从EEG中准确解码出特定大脑活动是BCI技术中的关键步骤,最常用的手段就是深度神经网络。但是以往的深度神经网络往往都对大脑运动任务进行粗略分类,难以从神经生理学的高度解码EEG中精细的活动特征。今年1月份,Neeles和 Konstantinos团队发表在《Nature》子刊《Scientific reports》上的一篇报道提出了一个可以在神经生理学高度解释的三维卷积神经网络(3D-CNN),该网络能够捕获运动过程中EEG特征的时空特性,保留了大脑诱发活动中至关重要的时间成分。且在测试其对相似运动模式的分类时,准确率达到了80%以上。相比现在的2D-CNN,3D-CNN的这一改进使得网络分类决策过程和大脑活动的神经生理学吻合度更高,这对复杂大脑活动的实时分类是一个重大进步。

02

从诱发反应中解码动态脑模式:应用于时间序列神经成像数据的多元模式分析教程

多变量模式分析(MVPA)或大脑解码方法已经成为分析功能磁共振数据的标准做法。虽然解码方法已广泛应用于脑机接口,但其应用于时间序列神经成像数据(如脑磁图、脑电图)以解决认知神经科学中的实验问题是最近的事。在本教程中,我们描述了从认知神经科学的角度来告知未来时间序列解码研究的广泛选择。使用脑磁图数据的例子,我们说明了解码分析流程中的不同选项对实验结果的影响,目的是解码不同的知觉刺激或认知状态随时间的动态大脑激活模式。我们展示了在预处理(如降维、降采样、试次平均)和解码(如分类器选择、交叉验证设计)时所做的决策。除了标准解码外,我们还描述了对时变神经成像数据的MVPA的扩展,包括表征相似性分析、时间泛化和分类器权重图的解释。最后,我们概述了时间序列解码实验设计和解释中的重要注意事项。本文发表在Journal of Cognitive Neuroscience杂志。

01

基于EEG的癫痫自动检测: 综述与展望

摘要:癫痫是一种由脑部神经元阵发性异常超同步电活动导致的慢性非传染性疾病, 也是全球最常见的神经系统疾病之一. 基于EEG的癫痫自动检测是指通过机器学习、分布检验、相关性分析和时频分析等数据分析方法, 对癫痫发作阶段的EEG信号进行自动识别的研究问题, 能够为癫痫诊疗与评估提供客观参考依据, 从而减轻医生工作负担并提高治疗效率, 因此具有十分重要的理论意义与实际应用价值. 本文详细介绍基于EEG的癫痫自动识别整体框架, 以及对应于各个步骤所涉及的典型方法. 针对核心模块, 即特征提取与分类器选择, 进行方法总结与理论解释. 最后, 对癫痫自动检测研究领域的未来研究方向进行展望.

03

最讨厌说大话,只想聊经验!我从创建Hello world神经网络到底学会了什么?

我开始跟神经网络打交道是在几年之前,在看了一篇关于神经网络用途的文章后,我特别渴望能够深入研究一下这个在过去几年间吸引了众多关注的问题解决方案。 2015年,斯坦佛大学研发了一个模型,当时我被这个模型惊艳到了,因为它可以生成图片以及其所属区域的自然语言描述。看完之后,我非常想要做一些类似的工作,于是我开始了搜索。 根据我在其他机器学习领域的相关专题的经验,非常详细的数学解释,各种各样的衍生以及公式让人理解起来特别困难。于是,我决定暂时抛开这些。 当然这并不是说能立即上手写代码。必须学习一些关于神经网络的

05

基于EEG功能连接的多变量模式分析:抑郁症的分类研究

抑郁症(depressive disorder, MDD)是一种已经影响到全球超过3.5亿人的常见精神疾病,其主要特征是持久和严重的情绪低落或躁狂。患者很难控制自己的情绪,表现出情绪低落,从而降低了患者对所有活动的兴趣。到目前未知,抑郁症的病理生理机制仍不十分清楚。目前,临床上对抑郁症的诊断主要基于临床医生对患者的问卷量表调查,但是这种方法有一定的主观性。因此,研究者试图运用多种神经成像技术如EEG、MRI、MEG、PET等来实现对抑郁症的客观评价和诊断。在这些成像技术中,EEG似乎具有得天独厚的优势,如设备价格低、时间分辨率超高等。运用EEG技术,研究者发现抑郁症患者的不同频段震荡活动以及多个脑区之间的功能连接网络等表现出不用于正常人的特征。 近些年来,随着机器学习的兴起,机器学习结合抑郁症的EEG信号特征用于抑郁症的分类研究越来越受到研究者的青睐。尽管静息态EEG研究已经证实抑郁症和健康人的脑功能网络存在统计学差异,但是,到目前为止,基于机器学习的多变量模式分析能否捕获整体的EEG功能连接模式以实现高准确率区分抑郁症患者与正常对照者还尚未可知。近期,兰州大学相关研究团队在《IEEE Access》杂志发表题为《Multivariate pattern analysis of EEG-based functional connectivity: a study on the identification of depression》的研究论文,对上述问题进行了研究。本文对该项研究进行解读。

00

长文解读|深度学习+EEG时频空特征用于跨任务的心理负荷量评估

心理负荷量显著影响特定任务中的人员绩效。适当的心理负荷量可以提高工作效率。但是,沉重的脑力劳动会降低人类的记忆力,反应能力和操作能力。由于某些职业的脑力劳动量很大,例如飞行员,士兵,机组人员和外科医生,沉重的脑力劳动会导致严重的后果。因此,心理负荷量评估仍然是一个重要的课题。 近年来,基于脑电图的脑力负荷评估取得了重要成就。但是,出色的结果通常集中于在同一天完成单一心理任务的单个被试。这些方法在实验室外的效果不佳。要达到好的效果,必须克服三个问题,即跨被试,跨日期和跨任务问题。所谓的跨任务问题就是算法可以在不同的实验范式中评估心理负荷量。跨任务的心理负荷量评估,难点在于找到可以推广到各种心理任务的高鲁棒性的EEG特征。特征集通常使用两种方法生成:手工设计特征和通过深度学习提取特征。 最常用的手工设计特征是从5个频段(δ[1-3 Hz],θ[5-8 Hz],α[9-12 Hz],β[14-31 Hz]和γ[33-42 Hz])和2个扩展频带(γ1 [33-57 Hz]和γ2 [63-99 Hz])中提取的功率谱密度(PSD)特征。事件相关电位(ERP)和事件相关同步/去同步(ERS/ ERD)也广泛用于对EEG信号进行分类。 但是,这些手工设计的特征对于跨任务问题未取得可使用的结果。原因除了设计的特征不适合之外,各种任务下的心理负荷量级别的定义也可能导致误导分类结果,心理负荷量状况的标签可能被主观地和错误地定义。 近期,来自清华大学精密仪器系精密测量技术与仪器国家重点实验室的研究团队在IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING杂志发表题目为《Learning Spatial–Spectral–Temporal EEG Features With Recurrent 3D Convolutional Neural Networks for Cross-Task Mental Workload Assessment》研究论文,其设计了两种不同类型的心理负荷量实验,通过行为数据验证了实验的有效性,并提出了一个基于深度循环神经网络(RNN)和3D卷积神经网络的级联网络结构(R3DCNN),以在没有先验知识的情况下学习跨任务的脑电特征。

00

NeuroImage:基于脑电和结构MRI的AD和轻度认知障碍机器学习分类研究

《本文同步发布于“脑之说”微信公众号,欢迎搜索关注~~》 1. 背景   阿尔茨海默氏病(AD)是引起痴呆症的主要原因,约占全世界病例的70%。到2050年,痴呆症的发病率将增加两倍,大多数新病例将出现在在中低收入国家。轻度认知障碍(MCI)是健康和痴呆症之间的一个阶段,其特征是认知缺陷但不影响日常生活。MCI患者罹患痴呆症的风险增加,在5年内平均进展率为39%。目前迫切需要低成本,可普及的方法来促进早期痴呆症的发现。脑电图(EEG)由于其低成本和便携性而具有解决这一需求的潜力。近期,发表在《NeuroImage》杂志的一项研究收集了老年AD患者(55岁),健忘性MCI(aMCI)和健康对照组(每组约60名)的静息状态EEG,结构MRI(sMRI)和大量的神经心理学数据,在此基础上评估了AD和aMCI分类的一系列候选EEG标记(即频段功率和功能连接),并将其分类性能与sMRI进行了比较。该研究还测试了脑电图联合认知量表分类模型。在对AD进行分类时,sMRI的表现优于静息状态EEG(AUCs分别为1.00和0.76)。但EEG和sMRI都只能较好地区分aMCI和健康老年人(AUCs=0.67–0.73),而且两种方法均未达到70%以上的灵敏度。相对于单独使用MMSE评分,EEG联合MMSE评分并没有优势。该研究是脑电图和sMRI对AD和aMCI分类的首次直接比较。 2.方法 2.1研究群体   从Dokuz Eylul大学神经病学系的门诊招募了AD(n=118)和aMCI的老年人(n=134)。利用各种社区资源中招募健康的老年人(n=198;55岁及以上),包括在公共会议和大学广告牌上发布公告。AD诊断是根据美国衰老和老年痴呆症协会(NIA-AA)的标准做出的。AD患者的纳入标准是:a)隐匿性发作;b)日常功能受损(临床痴呆评分(CDR)评分为1);c)两个或多个认知领域的损害;d)排除谵妄,痴其他原因引起的呆和其他主要精神疾病等。根据NIA-AA标准进行了aMCI诊断。 2.2诊断标准   所有受试者均通过一系列全面的神经心理学测试进行评估,旨在通过以下测试评估言语和视觉情景记忆、注意力、执行功能、视觉空间技能和语言:MMSE、Oktem口头记忆能力测试(OVMPT)、韦氏记忆量表修订版(WMS-R)数字跨度测试、口语流利性测试(语义)、波士顿命名测试(BNT)和CDR量表。使用了Yesavage老年抑郁量表排除抑郁。最后,所以受试者进行了神经、神经影像和实验室检查。 2.3EEG数据获取    根据国际10-20系统,将30个Ag / AgCl电极放在弹性帽(Easy-Cap;Brain Products GmbH;Gilching,德国)上记录脑电图,连接的耳垂电极(A1+A2)作为参考。记录室是电屏蔽的,声音衰减并且光线昏暗。从右眼的内侧上眼眶边缘和外侧眼眶边缘记录眼电图(EOG)。所有电极阻抗均小于10kΩ。脑电图和EOG通过带有0.03–70 Hz带通滤波器的Brain Amp 32通道DC系统机器进行放大,并以500 Hz的采样率在线数字化(Brain Products GmbH;Gilching,德国)。记录EEG:睁眼(EO)4分钟,闭眼(EC)4分钟。 2.4EEG数据预处理   EEGLAB结合FASTER插件进行预处理。将数据在0.1到70 Hz之间进行带通滤波,在50 Hz处陷波滤波,并以所有头皮电极为参考取平均。然后将其提取为2 s的数据段。FASTER删除了包含大伪迹(例如肌肉抽搐)和信号质量较差的内插通道数据。还使用FASTER自动识别了伪迹(即非神经)独立成分,并将其从数据中自动删除。然后视检数据质量,并去除任何残留的杂乱含噪数据。   去除受额外噪声影响的42例数据(16AD,13aMCI,13HC)。剩余408例数据(102AD, 121aMCI, 185HC)。闭眼状态下,预处理和视检去除数据平均百分数为6.38%(SD=2.78%, median=5.23%,range=2.08-23.03%),睁眼状态为6.67%(SD=5.91%,median=4.85%,range=2.08-26.88%)。闭眼状态,去除的独立成分平均数为2.73(SD=0.92, MEDIAN=3,RANGE=1-5),闭眼脑电最终平均时长225s,(SD=9.89S,MEDIAN=227.46S,RANGE=184.72-235),睁眼脑电为224s,(SD=12.72S,MEDIAN=228.35,RANGE=175.48-235)。 2.5脑电频段和功率比计算   使用具有Hann窗和0.5 Hz频率分辨率的多窗谱估计,对30个头皮电极上的绝对和相对功率进行谱分析。分别计算受试者睁眼和闭眼时脑电的功率,以探索这两种唤醒状态之间的潜在差异。包括以

00
领券