首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

线性代数的本质课程笔记(中)-点积和叉积

from=search&seid=12903800853888635103 点积的标准观点 如果我们有两个维数相同的向量,他们的点积就是对应位置的数相乘,然后再相加: 从投影的角度看,要求两个向量v和w...的点积,可以将向量w朝着过原点的向量v所在的直线进行投影,然后将w投影后的长度乘上向量v的长度(注意两个向量的的夹角)。...当两个向量的夹角小于90度时,点积后结果为正,如果两个向量垂直,点积结果为0,如果两个向量夹角大于90度,点积结果为负。 一个有趣的发现是,你把w投影到v上面,或者把v投影到w上面,结果是相同的。...联想之前所学的线性变换过程,假设u是二维空间变换到一维空间后的基向量: 在第三讲中我们已经知道,一个2*2的矩阵,[[a,c],[b,d]]其实代表了一种线性变换,它把原来的[1,0]变换到[a,b]的位置...上面的思路总结起来,就是无论何时你看到一个二维到一维的线性变换,那么应用这个线性变换和与这个向量点乘在计算上等价: 上面是数学中“对偶性”的一个有趣实例。

1.6K20
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    Pyspark处理数据中带有列分隔符的数据集

    本篇文章目标是处理在数据集中存在列分隔符或分隔符的特殊场景。对于Pyspark开发人员来说,处理这种类型的数据集有时是一件令人头疼的事情,但无论如何都必须处理它。...使用spark的Read .csv()方法读取数据集: #create spark session import pyspark from pyspark.sql import SparkSession...从文件中读取数据并将数据放入内存后我们发现,最后一列数据在哪里,列年龄必须有一个整数数据类型,但是我们看到了一些其他的东西。这不是我们所期望的。一团糟,完全不匹配,不是吗?...我们已经成功地将“|”分隔的列(“name”)数据分成两列。现在,数据更加干净,可以轻松地使用。...要验证数据转换,我们将把转换后的数据集写入CSV文件,然后使用read. CSV()方法读取它。

    4K30

    如何从 Pandas 迁移到 Spark?这 8 个问答解决你所有疑问

    Spark 学起来更难,但有了最新的 API,你可以使用数据帧来处理大数据,它们和 Pandas 数据帧用起来一样简单。 此外,直到最近,Spark 对可视化的支持都不怎么样。...与 Pandas 相比,PySpark 稍微难一些,并且有一点学习曲线——但用起来的感觉也差不多。 它们的主要区别是: Spark 允许你查询数据帧——我觉得这真的很棒。...有时,在 SQL 中编写某些逻辑比在 Pandas/PySpark 中记住确切的 API 更容易,并且你可以交替使用两种办法。 Spark 数据帧是不可变的。不允许切片、覆盖数据等。...Spark 不仅提供数据帧(这是对 RDD 的更高级别的抽象),而且还提供了用于流数据和通过 MLLib 进行分布式机器学习的出色 API。...Parquet 文件中的 S3 中,然后从 SageMaker 读取它们(假如你更喜欢使用 SageMaker 而不是 Spark 的 MLLib)。

    4.4K10

    【原】Spark之机器学习(Python版)(二)——分类

    pyspark.ml和pyspark.mllib分别是ml的api和mllib的api,ml的算法真心少啊,而且支持的功能很有限,譬如Lr(逻辑回归)和GBT目前只支持二分类,不支持多分类。...image.png 图一 pyspark.ml的api image.png 图二 pyspark.mllib的api  从上面两张图可以看到,mllib的功能比ml强大的不是一点半点啊,那ml...下一次讲回归,我决定不只写pyspark.ml的应用了,因为实在是图样图naive,想弄清楚pyspark的机器学习算法是怎么运行的,跟普通的算法运行有什么区别,优势等,再写个pyspark.mllib...其实换一种想法,不用spark也行,直接用mapreduce编程序,但是mapreduce慢啊(此处不严谨,因为并没有测试过两者的性能差异,待补充),在我使用spark的短暂时间内,我个人认为spark...前段时间看的alluxio也是占了内存的优势。恩,说了很多废话。下周争取研究的深一点,不然在公司里讲都没人听 = =。

    1.4K60

    使用PySpark迁移学习

    它提供了易于使用的API,可以在极少数代码行中实现深度学习。...数据集 孟加拉语脚本有十个数字(字母或符号表示从0到9的数字)。使用位置基数为10的数字系统在孟加拉语中写入大于9的数字。 选择NumtaDB作为数据集的来源。这是孟加拉手写数字数据的集合。...之后,将评估训练模型的性能。 加载图片 数据集(从0到9)包含近500个手写的Bangla数字(每个类别50个图像)。在这里使用目标列手动将每个图像加载到spark数据框架中。...加载整个数据集后,将训练集和最终测试集随机分成8:2比例。 目标是使用训练数据集训练模型,最后使用测试数据集评估模型的性能。...需要转换Spark非数据帧到Pandas非数据帧的第一 和 再 调用混淆矩阵与真实和预测的标签。

    1.8K30

    tcpip模型中,帧是第几层的数据单元?

    在网络通信的世界中,TCP/IP模型以其高效和可靠性而著称。这个模型是现代互联网通信的基石,它定义了数据在网络中如何被传输和接收。其中,一个核心的概念是数据单元的层级,特别是“帧”在这个模型中的位置。...在这一层中,数据被封装成帧,然后通过物理媒介,如有线或无线方式,传输到另一端的设备。那么,帧是什么呢?帧可以被看作是网络数据传输的基本单位。...虽然在高级网络编程中很少需要直接处理帧,但对这一基本概念的理解有助于更好地理解网络数据的流动和处理。例如,使用Python进行网络编程时,开发者可能会使用如socket编程库来处理网络通信。...在使用Python进行网络编程时,虽然不直接操作帧,但可以通过创建和使用socket来发送和接收数据。...客户端则连接到这个服务器,并接收来自服务器的消息。虽然这个例子中的数据交换看似简单,但在底层,TCP/IP模型中的网络接口层正通过帧来传输这些数据。

    30210

    PySpark|ML(评估器)

    引 言 在PySpark中包含了两种机器学习相关的包:MLlib和ML,二者的主要区别在于MLlib包的操作是基于RDD的,ML包的操作是基于DataFrame的。...根据之前我们叙述过的DataFrame的性能要远远好于RDD,并且MLlib已经不再被维护了,所以在本专栏中我们将不会讲解MLlib。...数据集获取地址1:https://gitee.com/dtval/data.git 数据集获取地址2:公众号后台回复spark 01 评估器简介 ML中的评估器主要是对于机器学习算法的使用,包括预测、...分类、聚类等,本文中会介绍多种模型的使用方式以及使用一些模型来实现简单的案例。...DecisionTreeRegressor 决策树回归 GBTRegressor 梯度提升决策树回归 GeneralizedLinearRegression 广义线性回归 IsotonicRegression 拟合一个形式自由、非递减的行到数据中

    1.6K10

    Spark中的聚类算法

    Spark - Clustering 官方文档:https://spark.apache.org/docs/2.2.0/ml-clustering.html 这部分介绍MLlib中的聚类算法; 目录:...,它将数据聚集到预先设定的N个簇中; KMeans作为一个预测器,生成一个KMeansModel作为基本模型; 输入列 Param name Type(s) Default Description featuresCol...transformed = model.transform(dataset) transformed.show(truncate=False) Bisecting k-means Bisecting k-means是一种使用分裂方法的层次聚类算法...:所有数据点开始都处在一个簇中,递归的对数据进行划分直到簇的个数为指定个数为止; Bisecting k-means一般比K-means要快,但是它会生成不一样的聚类结果; BisectingKMeans...每个点都有其自己 的概率,spark.ml基于给定数据通过期望最大化算法来归纳最大似然模型实现算法; 输入列 Param name Type(s) Default Description featuresCol

    2.1K41

    【Python】PySpark 数据计算 ⑤ ( RDD#sortBy方法 - 排序 RDD 中的元素 )

    , 统计文件中单词的个数并排序 ; 思路 : 先 读取数据到 RDD 中 , 然后 按照空格分割开 再展平 , 获取到每个单词 , 根据上述单词列表 , 生成一个 二元元组 列表 , 列表中每个元素的...进行排序 , 按照升序进行排序 ; 2、代码示例 对 RDD 数据进行排序的核心代码如下 : # 对 rdd4 中的数据进行排序 rdd5 = rdd4.sortBy(lambda element:...1 ; 排序后的结果为 : [('Jack', 2), ('Jerry', 3), ('Tom', 4)] 代码示例 : """ PySpark 数据处理 """ # 导入 PySpark 相关包...rdd2.collect()) # 将 rdd 数据 的 列表中的元素 转为二元元组, 第二个元素设置为 1 rdd3 = rdd2.map(lambda element: (element, 1))...rdd4 = rdd3.reduceByKey(lambda a, b: a + b) print("统计单词 : ", rdd4.collect()) # 对 rdd4 中的数据进行排序 rdd5

    49110

    用Spark学习FP Tree算法和PrefixSpan算法

    由于scikit-learn中没有关联算法的类库,而Spark MLlib有,本文的使用以Spark MLlib作为使用环境。 1. ...Spark MLlib关联算法基于Python的接口在pyspark.mllib.fpm包中。...Spark MLlib关联算法参数介绍     对于FPGrowth类,使用它的训练函数train主要需要输入三个参数:数据项集data,支持度阈值minSupport和数据并行运行时的数据分块数numPartitions...FP Tree算法原理总结中的分析比照,我们使用和原理篇一样的数据项集,一样的支持度阈值20%,来训练数据。...为了和PrefixSpan算法原理总结中的分析比照,我们使用和原理篇一样的数据项集,一样的支持度阈值50%,同时将最长频繁序列程度设置为4,来训练数据。

    1.8K30

    PySpark初级教程——第一步大数据分析(附代码实现)

    服务的入口点): ?...使用5个分区时,花了11.1毫秒来筛选数字: ? 转换 在Spark中,数据结构是不可变的。这意味着一旦创建它们就不能更改。但是如果我们不能改变它,我们该如何使用它呢?...在本文中,我们将详细讨论MLlib提供的一些数据类型。在以后的文章中,我们将讨论诸如特征提取和构建机器学习管道之类的主题。 局部向量 MLlib支持两种类型的本地向量:稠密和稀疏。...标签点 标签点(Labeled Point)是一个局部向量,其中每个向量都有一个标签。这可以用在监督学习中,你有一些目标的特征与这些特征对应的标签。...创建坐标矩阵 只有当矩阵的维数都很大时,我们才使用坐标矩阵 from pyspark.mllib.linalg.distributed import CoordinateMatrix, MatrixEntry

    4.5K20

    Spark编程实验六:Spark机器学习库MLlib编程

    一、目的与要求 1、通过实验掌握基本的MLLib编程方法; 2、掌握用MLLib解决一些常见的数据分析问题,包括数据导入、成分分析和分类和预测等。...这使得我们可以选择最适合特定任务的算法进行建模和预测。 大规模数据处理: 基于 Spark 引擎,MLlib 可以处理大规模数据集,利用分布式计算能力进行高效的机器学习任务。...DataFrame API: MLlib 使用 Spark 的 DataFrame API 进行数据处理和特征工程,这个 API 提供了丰富的函数和转换操作,使得数据清洗、特征提取和转换等流程更加简洁和可扩展...模型持久化与加载: MLlib 支持将训练好的模型保存到磁盘,并且可以方便地加载模型进行预测和推理。这样,在实际应用中,可以将模型部署到生产环境中,进行实时的数据处理和预测。...通过深入学习和实践 MLlib,我们可以更好地理解和应用各种机器学习算法,掌握大规模数据处理和分布式计算的技巧,为解决实际问题提供强大的工具和框架。

    6400

    Python大数据处理扩展库pySpark用法精要

    Spark的设计目的是全栈式解决批处理、结构化数据查询、流计算、图计算和机器学习等业务和应用,适用于需要多次操作特定数据集的应用场合。需要反复操作的次数越多,所需读取的数据量越大,效率提升越大。...为了适应迭代计算,Spark把经常被重用的数据缓存到内存中以提高数据读取和操作速度,比Hadoop快近百倍,并且支持Java、Scala、Python、R等多种语言。...扩展库pyspark提供了SparkContext(Spark功能的主要入口,一个SparkContext表示与一个Spark集群的连接,可用来创建RDD或在该集群上广播变量)、RDD(Spark中的基本抽象...(用来配置Spark)、SparkFiles(访问任务的文件)、StorageLevel(更细粒度的缓冲永久级别)等可以公开访问的类,并且提供了pyspark.sql、pyspark.streaming...与pyspark.mllib等模块与包。

    1.8K60

    【Android 高性能音频】Oboe 开发流程 ( Oboe 音频帧简介 | AudioStreamCallback 中的数据帧说明 )

    文章目录 一、音频帧概念 二、AudioStreamCallback 中的音频数据帧说明 Oboe GitHub 主页 : GitHub/Oboe ① 简单使用 : Getting Started...; 在 【Android 高性能音频】Oboe 开发流程 ( Oboe 完整代码示例 ) 中展示了一个 完整的 Oboe 播放器案例 ; 一、音频帧概念 ---- 帧 代表一个 声音单元 , 该单元中的...类型 ; 上述 1 个音频帧的字节大小是 2\times 2 = 4 字节 ; 二、AudioStreamCallback 中的音频数据帧说明 ---- 在 Oboe 播放器回调类 oboe::...AudioStreamCallback 中 , 实现的 onAudioReady 方法 , 其中的 int32_t numFrames 就是本次需要采样的帧数 , 注意单位是音频帧 , 这里的音频帧就是上面所说的...numFrames 乘以 8 字节的音频采样 ; 在 onAudioReady 方法中 , 需要 采集 8 \times numFrames 字节 的音频数据样本 , 并将数据拷贝到 void

    12.2K00

    PySpark 中的机器学习库

    在Spark的早期版本(Spark1.x)中,SparkContext是Spark的主要切入点。...真假美猴王之mllib与ml 目前,Spark 中有两个机器学习库,ml和 mllib的主要区别和联系如下: ml和mllib都是Spark中的机器学习库,目前常用的机器学习功能2个库都能满足需求。...spark官方推荐使用ml,因为ml功能更全面更灵活,未来会主要支持ml,mllib很有可能会被废弃(据说可能是在spark3.0中deprecated)。...NaiveBayes:基于贝叶斯定理,这个模型使用条件概率来分类观测。 PySpark ML中的NaiveBayes模型支持二元和多元标签。...KMeans : 将数据分成k个簇,随机生成k个初始点作为质心,将数据集中的数据按照距离质心的远近分到各个簇中,将各个簇中的数据求平均值,作为新的质心,重复上一步,直到所有的簇不再改变。

    3.4K20

    PySpark UD(A)F 的高效使用

    由于主要是在PySpark中处理DataFrames,所以可以在RDD属性的帮助下访问底层RDD,并使用toDF()将其转换回来。这个RDD API允许指定在数据上执行的任意Python函数。...下图还显示了在 PySpark 中使用任意 Python 函数时的整个数据流,该图来自PySpark Internal Wiki....这意味着在UDF中将这些列转换为JSON,返回Pandas数据帧,并最终将Spark数据帧中的相应列从JSON转换为复杂类型 [2enpwvagkq.png] 5.实现 将实现分为三种不同的功能: 1)...除了转换后的数据帧外,它还返回一个带有列名及其转换后的原始数据类型的字典。 complex_dtypes_from_json使用该信息将这些列精确地转换回它们的原始类型。...作为最后一步,使用 complex_dtypes_from_json 将转换后的 Spark 数据帧的 JSON 字符串转换回复杂数据类型。

    19.7K31

    分布式机器学习原理及实战(Pyspark)

    大数据技术,是指从各种各样类型的数据中,快速获得有价值信息的能力。...PySpark是Spark的Python API,通过Pyspark可以方便地使用 Python编写 Spark 应用程序, 其支持 了Spark 的大部分功能,例如 Spark SQL、DataFrame...二、PySpark分布式机器学习 2.1 PySpark机器学习库 Pyspark中支持两个机器学习库:mllib及ml,区别在于ml主要操作的是DataFrame,而mllib操作的是RDD,即二者面向的数据集不一样...相比于mllib在RDD提供的基础操作,ml在DataFrame上的抽象级别更高,数据和操作耦合度更低。 注:mllib在后面的版本中可能被废弃,本文示例使用的是ml库。...PySpark项目实战 注:单纯拿Pyspark练练手,可无需配置Pyspark集群,直接本地配置下单机Pyspark,也可以使用线上spark集群(如: community.cloud.databricks.com

    4.7K20
    领券