首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

Pandas数据可视化

直方图看起来很像条形图, 直方图是一种特殊的条形图,它可以将数据分成均匀的间隔,并用条形图显示每个间隔中有多少行, 直方图柱子的宽度代表了分组的间距,柱状图柱子宽度没有意义 直方图缺点:将数据分成均匀的间隔区间...,所以它们对歪斜的数据的处理不是很好: 在第一个直方图中,将价格>200的葡萄酒排除了。...如果分类比较多,必然每个分类的面积会比较小,这个时候很难比较两个类别 如果两个类别在饼图中彼此不相邻,很难进行比较  可以使用柱状图图来替换饼图 Pandas 双变量可视化 数据分析时,我们需要找到变量之间的相互关系...,比如一个变量的增加是否与另一个变量有关,数据可视化是找到两个变量的关系的最佳方法; 散点图 最简单的两个变量可视化图形是散点图,散点图中的一个点,可以表示两个变量 reviews[reviews['price...散点图最适合使用相对较小的数据集以及具有大量唯一值的变量。 有几种方法可以处理过度绘图。

12610
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    程序员用python给了女友一个七夕惊喜!

    如下为第一天和最后一天的条形图: ? ? 再来看一下用于画图的每日数据,假设2020年1月1日为起始日期,1月20日为当天(即发布供检阅的)日期,故要对这些数据画20次图(别怕,兄dei)。 ?...进入代码环节:先按需求读取数据(读表最爱的 pandas 库又出现啦)。为了便于处理日期,将 excel 中的日期一列的值转为字符串格式,再利用 datatime 将起始日期设为时间戳格式。...下一步即为通过 barh 方法绘制条形图,且每次画新图前需清空上一次的图像。...注意: 动图的时长和帧数,以及动图在html中与逐行打印文字同步显示,大家还需根据实际内容对代码进行调整,以达到最佳效果哦! 好了不想写了,快速部署的部分大家自己搜索资料吧... ... ?...首先进入企鹅云官网,在左上角的栏目中找到“对象储存”,进入页面后点击“立即使用”。 ? 然后创建一个桶子,记得选“公有读私有写”,完全私有就不能通过外部访问啦。 ? ? 把相关文件丢到桶子里。 ?

    1.9K20

    50种常见Matplotlib科研论文绘图合集!赶紧收藏~~

    3、带线性回归最佳拟合线的散点图 (Scatter plot with linear regression line of best fit) 如果你想了解两个变量如何相互改变,那么最佳拟合线就是常用的方法...下图显示了数据中各组之间最佳拟合线的差异。要禁用分组并仅为整个数据集绘制一条最佳拟合线,请从下面的sns.lmplot()调用中删除hue ='cyl'参数。...针对每列绘制线性回归线 或者,可以在其每列中显示每个组的最佳拟合线。...,就可以使用这种方法。...每条垂直线(在自相关图上)表示系列与滞后0之间的滞后之间的相关性。图中的蓝色阴影区域是显着性水平。那些位于蓝线之上的滞后是显着的滞后。

    4.3K20

    让你彻底弄懂用Python绘制条形图(柱状图)

    四、并列条形图 有时在绘制条形图时需对比显示某些信息,比如想同时观察股票最高价和最低价的变化趋势,可采用并列条形图,具体语句如下: result = date.groupby(date.index.year...五、叠加条形图 有时一个变量的数值恒小于另一个变量,这时可以把两个条形图绘制到一个条形图中,用不同的颜色显示这两个条形图即可。...比如股票价格的最小值恒小于最大值,可以把这两个数组绘制在同一个条形图中,具体语句如下: result = date.groupby(date.index.year).agg(high=('最高价','mean...有时需要把两组数值绘制在同一个条形图中,以股票最高价和最低价为示例,绘制拼接条形图,具体语句如下: result = date.groupby(date.index.year).agg(high=('最高价...至此,在Python中绘制条形图已全部讲解完毕,感兴趣的同学可以自己实现一遍

    12.5K40

    uniapp使用echarts在H5上显示报错问题的解决方法

    前言在做uniapp vue3开发的echarts图表的时候,发现在浏览器上面正常运行,但在微信开发者工具上显示报错了,报错如下原因:在微信小程序中,使用document.getElementById会报错...,因为小程序的运行环境是基于WedView的,不同于浏览器环境。...在微信小程序中没有直接操作Dom的能力,也就是没有document对象和getElementById方法一、使用echarts在浏览器上运行的方法安装echarts vue-echarts库npm i...uCharts的高性能跨平台图表库,在PC、H5、APP、小程序兼容uCharts官网跨平台引用这里的跨平台引用指的是以 uni-app 或者 Taro 为基础的框架平台,借助跨平台框架将 uCharts...获取uCharts原生 uCharts 您只需获取 u-charts.js 或 u-charts.min.js 单个文件,在页面中引用这个 js 即可开始使用,您可通过以下方式获得 uCharts:通过码云

    27910

    原来使用 Pandas 绘制图表也这么惊艳

    数据可视化是捕捉趋势和分享从数据中获得的见解的非常有效的方式,流行的可视化工具有很多,它们各具特色,但是在今天的文章中,我们将学习使用 Pandas 进行绘图。...Pandas 的 plot() 方法 Pandas 附带了一些绘图功能,底层都是基于 Matplotlib 库的,也就是说,由 Pandas 库创建的任何绘图都是 Matplotlib 对象。...首先,我们需要按月末重新采样数据,然后使用 mean() 方法计算每个月的平均股价。...,这些条形图代表不同的组,结果条的高度显示了组的组合结果。...如果在同一个图中显示了多个面积图,则不同的颜色可以区分不同的面积图: df.plot(kind='area', figsize=(9,6)) Output: Pandas plot() 方法默认创建堆积面积图

    4.6K50

    图表(Chart & Graph)你真的用对了吗?

    2)条形图 条形图基本上是水平的柱形图,可以用于避免在超过10个项目进行比较时产生杂乱。这种图表类型也可用于显示负数。 设计条形图的最佳做法: 图表中使用对比色,高亮特殊有意义的数据。...6)堆叠条形图 这种图表用于比较多个不同的数据集,并显示每个被比较的数据集的组成。 设计堆叠条形图的最佳做法: 最适用于说明部分和整体的关系。 使用对比色,会使对比更加清晰。...设计漏斗图的最佳做法: 根据数据集的大小,准确的显示每个部分的大小。 漏斗图中使用渐变色调中的对比色。 12)子弹图 子弹图用于和标尺做对比,以便显示目标的进展程度。...设计子弹图的最佳做法: 使用对比色来突出显示数据的进度。 使用不同色调的颜色来衡量进度。 13)甘特图 甘特图擅长说明项目的开始和结束日期要素。 设定期限对项目的成功至关重要。...可以在甘特图中结合地图和其它图表类型。 看完以上常用图表的介绍,你真的用对了图表吗?

    2.3K10

    使用 Python 进行数据可视化之Plotly

    pip install plotly image.png 散点图 散点图中Plotly可以使用被创建scatter()plotly.express的方法。...中的条形图可以使用 plotly.express 类的 bar() 方法创建。...让我们讨论其中的几个。 创建下拉菜单:下拉菜单是菜单按钮的一部分,始终显示在屏幕上。每个菜单按钮都与一个菜单小部件相关联,该小部件可以在单击该菜单按钮时显示该菜单按钮的选项。...在 plotly 中,有 4 种可能的方法可以使用 updatemenu 方法来修改图表。...它允许在指定的最小和最大范围之间选择一个值或一个值范围。范围选择器是一种用于选择要在图表中显示的范围的工具。它提供了用于在图表中选择预配置范围的按钮。

    2.1K41

    数据预处理

    在 数据驱动时代 中,有 数据质量问题 意味着在现在和将来为公司损失巨大的价值。所以,尊重你的国王并关心他。最直接的方法是计划和 努力工作 来生成高质量的数据。...- 工具包 我们将要使用的工具是 Python3 和他的 Pandas 库 ,它是操纵数据集的事实上的标准。...检查 这里 以获得 Pandas 的方法。 - 拼写检查 为了均衡,你想纠正错误的词。检查 这里 以获得一个好的 Python 模块。...最佳实践和练习: 1, 2, 3 - 重塑你的数据 也许你会将你的数据输入神经网络或者在彩色条形图中显示它们。无论如何,你需要转换数据并为数据管道提供正确的形状。 这里 是一个这个任务非常好的教程。...最佳实践和练习: 1, 2, 3 - 规范日期 我想可能有一百种方法来记下约会。你需要确定你的格式并使其在整个数据集中统一。

    1.3K00

    你知道怎么用Pandas绘制带交互的可视化图表吗?

    但其实,在Pandas的0.25.0版本之后,提供了一些其他绘图后端,其中就有我们今天要演示的主角基于Bokeh!...导入库后,在DataFrames和Series上就新添加了一个绘图方法plot_bokeh()。...") 当然在使用的时候,记得先设置 绘制后端为pandas_bokeh import pandas as pd pd.set_option('plotting.backend', 'pandas_bokeh...(上图中我们绘制的是2017年的数据),则无需对y赋值,结果会嵌套显示在一个图中: df_pie.plot_bokeh.pie( x="Partei", colormap=["blue"...bin 边缘,包括最右边的边缘,允许不均匀的 bin 宽度,如果 bins 是字符串,则它定义用于计算最佳 bin 宽度的方法,如histogram_bin_edges所定义 histogram_type

    3.8K30

    最强 Python 数据可视化库,没有之一!

    这也导致我花费了不知多少个深夜,在 StackOverflow 上搜索如何“格式化日期”或“增加第二个Y轴”。...我们实际使用的则是一个对 plotly 进行封装的库,名叫 cufflinks,它能让你更方便地使用 plotly 和 Pandas 数据表协同工作。...如果你想绘制堆叠柱状图,也只需要这样: 对 pandas 数据表进行简单的处理,并生成条形图: 就像上面展示的那样,我们可以将 plotly + cufflinks 和 pandas 的能力整合在一起...以我在“Towards Data Science”网站上发表的文章数据为例,让我们以发布时间为索引构建一个数据集,看看文章热度的变化情况: 在上图中,我们用一行代码完成了几件事情: 自动生成美观的时间序列...语言实现以上功能的最佳选择非 plotly 莫属。

    2K31

    Python Bokeh 库进行数据可视化实用指南

    pandas_bokeh.output_file(文件名) Hovertool 用于在我们使用鼠标指针悬停在数据上时显示值, ColumnDataSource 是 DataFrame 的 Bokeh...output_file('abc.html') 使用Bokeh库主题 Bokeh主题有一组预定义的设计,可以将它们应用到您的绘图中。Bokeh 提供了五个内置主题。...中) 显示结果 Python 中的Bokeh用例 我们将要处理的数据是我们当中最著名的数据集,可以在 kaggle上找到该数据集。...df_min.plot_Bokeh.scatter(x='Min', y='1T') Bokeh散点图 要制作包含多个图例的散点图,我们需要使用圆圈;这是图形对象的一种方法。...有许多可用的布局选项: 如果要垂直显示图,请使用**column()**函数。 如果要水平显示图,请使用**row()**函数。

    5.6K50

    功能强大、文档健全的开源 Python 绘图库 Plotly,手把手教你用!

    这也导致我花费了不知多少个深夜,在 StackOverflow 上搜索如何“格式化日期”或“增加第二个Y轴”。...我们实际使用的则是一个对 plotly 进行封装的库,名叫 cufflinks,它能让你更方便地使用 plotly 和 Pandas 数据表协同工作。...对 pandas 数据表进行简单的处理,并生成条形图: ? ? 就像上面展示的那样,我们可以将 plotly + cufflinks 和 pandas 的能力整合在一起。...在上图中,我们用一行代码完成了几件事情: 自动生成美观的时间序列 X 轴 增加第二条 Y 轴,因为两个变量的范围并不一致 把文章标题放在鼠标悬停时显示的标签中 为了显示更多数据,我们可以方便地添加文本注释...语言实现以上功能的最佳选择非 plotly 莫属。

    4.2K52

    Pandas疫情探索性分析

    在第一篇案例中我们基于网易实时疫情播报平台,使用Python对疫情数据进行了爬取。 1. 数据及Pandas工具介绍 在第一篇案例中我们基于网易实时疫情播报平台,使用Python对疫情数据进行了爬取。...Pandas是基于NumPy数组构建的,能够灵活处理关系型数据,可便捷的完成索引、切片、组合以及选取数据子集等操作。接下来就让我们一起使用Pandas对疫情数据进行探索性分析。 2....从图中可知,香港、台湾新增确诊人数最多,且在新增确诊前十名的地区,香港占比将近一半。 全国现存确诊人数top10的地区 接下来我们查看一下全国现存确诊病例前十名的地区有哪些。...在3月下旬,美国和西班牙首次单日新增确诊人数破万,而最新数据显示美国单日新增已突破25000例。 在前面两张图里,我们发现日本由于数据较小,很难观察疫情的变化趋势。...此外,我们还使用了Pandas进行数据可视化,通过图表的绘制探索数据的内涵。同时,我们介绍了时间序列数据的处理方法、如何使用Groupby技术进行数据分组,以及层次化索引的操作方法。

    3.4K41

    最强最炫的Python数据可视化神器,没有之一!

    这也导致我花费了不知多少个深夜,在 StackOverflow 上搜索如何“格式化日期”或“增加第二个Y轴”。...我们实际使用的则是一个对 plotly 进行封装的库,名叫 cufflinks,它能让你更方便地使用 plotly 和 Pandas 数据表协同工作。...如果你想绘制堆叠柱状图,也只需要这样: 对 pandas 数据表进行简单的处理,并生成条形图: 就像上面展示的那样,我们可以将 plotly + cufflinks 和 pandas 的能力整合在一起...以我在“Towards Data Science”网站上发表的文章数据为例,让我们以发布时间为索引构建一个数据集,看看文章热度的变化情况: 在上图中,我们用一行代码完成了几件事情: 自动生成美观的时间序列...语言实现以上功能的最佳选择非 plotly 莫属。

    1.4K10

    羡慕 Excel 的高级选择与文本框颜色呈现?Pandas 也可以拥有!! ⛵

    在本文中 ShowMeAI 将带大家在 Pandas Dataframe 中完成多条件数据选择及各种呈现样式的设置。...数据可以在ShowMeAI的百度网盘获取,数据读取与处理代码如下: 实战数据集下载(百度网盘):点击 这里 获取本文 [6] Pandas 使用 Styler API 设置多条件数据选择&丰富的呈现样式...图片 接下来演示在 Pandas 中完成这个操作的详细步骤!...内容覆盖 图片 本篇后续内容覆盖以下高级功能: 突出缺失值 突出显示每行/列中的最大值(或最小值) 突出显示范围内的值 绘制柱内条形图 使用颜色渐变突出显示值 组合显示设置功能 注意:强烈建议大家使用最新版本的...=1) 图片 注意:同样可以使用方法 dataframe.style.highlight_min() 使用适当的参数为行/列中的最小值着色。

    2.8K31

    超强 Python 数据可视化库,一文全解析

    这也导致我花费了不知多少个深夜,在 StackOverflow 上搜索如何“格式化日期”或“增加第二个Y轴”。...我们实际使用的则是一个对 plotly 进行封装的库,名叫 cufflinks,它能让你更方便地使用 plotly 和 Pandas 数据表协同工作。...如果你想绘制堆叠柱状图,也只需要这样: 对 pandas 数据表进行简单的处理,并生成条形图: 就像上面展示的那样,我们可以将 plotly + cufflinks 和 pandas 的能力整合在一起...以我在“Towards Data Science”网站上发表的文章数据为例,让我们以发布时间为索引构建一个数据集,看看文章热度的变化情况: 在上图中,我们用一行代码完成了几件事情: 自动生成美观的时间序列...语言实现以上功能的最佳选择非 plotly 莫属。

    1.1K40
    领券