首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    Python-科学计算-pandas-14-df按行按列进行转换

    系统:Windows 7 语言版本:Anaconda3-4.3.0.1-Windows-x86_64 编辑器:pycharm-community-2016.3.2 pandas:0.19.2 这个系列讲讲...Python的科学计算及可视化 今天讲讲pandas模块 将Df按行按列进行转换 Part 1:目标 最近在网站开发过程中,需要将后端的Df数据,渲染到前端的Datatables,前端识别的数据格式有以下特征...Part 2:代码 import pandas as pd dict_1 = {"time": ["2019-11-02", "2019-11-03", "2019-11-04", "2019-11-...Part 3:部分代码解读 list_fields = df_1.to_dict(orient='records'),使用了to_dict函数,其中orient=’records’,简单记忆法则,records...表示记录,对应数据库的行 Part 4:延伸 以上方法将Df按行转换,那么是否可以按列进行转换呢?

    1.9K30

    使用 Python 按行和按列对矩阵进行排序

    在本文中,我们将学习一个 python 程序来按行和按列对矩阵进行排序。 假设我们采用了一个输入的 MxM 矩阵。我们现在将使用嵌套的 for 循环对给定的输入矩阵进行逐行和按列排序。...使用 for 循环遍历矩阵的行。 使用另一个嵌套的 for 循环遍历窗体(行 +1)列到列的末尾。 将当前行、列元素与列、行元素交换。...通过调用上面定义的 printingMatrix() 函数按行和按列排序后打印生成的输入矩阵。...例 以下程序使用嵌套的 for 循环返回给定输入矩阵的按行和按列排序的矩阵 - # creating a function for sorting each row of matrix row-wise...此外,我们还学习了如何转置给定的矩阵,以及如何使用嵌套的 for 循环(而不是使用内置的 sort() 方法)按行对矩阵进行排序。

    6.1K50

    Excel按列排序和按行排序

    文章背景:Excel二维表中记录着多行多列的数据,有时需要按行或按列排序,使数据更加清晰、易读。下面分别对按列排序和按行排序进行介绍。...按列排序 视频演示:http://mpvideo.qpic.cn/0bf2kyaamaaazaab47jfqnpvavwdazlaabqa.f10002.mp4?...对于商品编号一列,存在文本型数字,因此,按列排序时会出现排序提醒。 将任意类似数字的内容排序 所有类似数字的文本会以数字大小排序。...按行排序 视频演示:http://mpvideo.qpic.cn/0b78lyaaaaaapuabszbfqjpvaxwdabpaaaaa.f10002.mp4? 本例中,行一代表各个月份。...在进行按行排序时,数据区域不包括A列。在Excel中,没有行标题的概念。因此,排序前如果框中A列的话,A列也将参与排列,会排到12月份之后,而这不是我们想要的结果。

    3.1K10

    pandas按照指定的列排序、paste命令指定分隔符、ggplot2添加拟合曲线

    pandas 按照指定的列排序 aa = {'AA':[1,2,3],"BB":[4,5,6],"CC":['A_3','A_1',"A_2"]} df = pd.DataFrame(aa) df.sort_values...("CC") 这样df本身不变 df.sort_values("CC",inplace=True) 这样df自己就变了 linux paste命令可以通过 -d参数指定分隔符,默认好像是空格还是tab...paste是用来合并列的 paste -d , L01.csv L02.csv > col_merged.csv R语言数据框统计每行或者每列中特定元素的个数 比如每行中的元素等于0的有多少个 用到的是...apply(df == 0,1,sum) [1] 0 1 1 0 0 0 0 2 0 0 > apply(df == 0,2,sum) A B 3 1 第二个位置的参数如果是1就按每行算,如果是二就用每列算...ggplot2添加拟合曲线 使用geom_smooth()函数 添加二次方程的拟合曲线 library(ggplot2) x<-seq(-2,2,by=0.05) y<-x^2 df<-data.frame

    1.2K20

    BI技巧丨按列排序

    常规的解决办法就是新增一列数字列,然后使用 “按列排序” 功能进行强制排序。按列排序固然可以解决中文字段的排序问题,但是使用之后,在某些场景下,使用DAX计算,会有一些额外的问题。...本期,我们来看一下按列排序功能产生的小问题以及解决方式。案例数据:图片图片数据比较简单,一张分店的维度信息表,一张销售事实表。...当StoreName这一列,根据StoreID这一列按列排序后,我们原本的分组计算度量值和分组排名度量值都失效了。...原因:当我们使用按列排序功能后,原本的字段和排序依据的字段相当于强关联,两个字段具有同等的直接筛选效果。因此,在涉及到清除上下文筛选时,如果原字段需要被清除筛选,则排序依据列也需要被清除筛选。

    3.5K20

    pandas基础:重命名pandas数据框架列

    准备用于演示的数据框架 pandas库提供了一种从网页读取数据的便捷方式,因此我们将从百度百科——世界500强公司名单——加载一个表格。 图1 看起来总共有6列。下面单独列出了这个表的列。...我们可以使用这种方法重命名索引(行)或列,我们需要告诉pandas我们正在更改什么(即列或行),这样就不会产生混淆。还需要在更改前后告诉pandas列名,这提高了可读性。...我选择不覆盖原始数据框架(即默认情况下inplace=False),因为我希望保留原始数据框架以供其他演示使用。注意,我们只需要传入计划更改名称的列。...图8 通过将上述列名重新赋值给一个新的类似列表的对象,我们可以轻松更改这些列名: 图9 注意,此方法与set_axis()方法类似,因为我们需要为要保留的每一列传入名称。 何时使用何方法?....rename()方法要求我们只传递需要更改的列 .set_axis()和df.columns要求我们传递所有列名 换句话说,使用: .rename()当只需要更改几列时。

    1.9K30

    Pandas按班拆分Excel文件+按班排名和按级排名

    Pandas groupby rank, 今天学习有: 1。用pandas.groupby+apply+to_excel进行按‘班别’列对一个Excel文件拆分成一个班一个文件的操作。...简单又强大 2.pandas+groupby+rank利用总分按班排名与按级排名 原数据表 # -*- coding: UTF-8 -*- import pandas as pd df=pd.read_excel...('data_1.xlsx') """ print(df) #在列的方向上删除‘学号’‘语文’ df=df.drop(['学号','语文'],axis=1) print(df) #在列的方向上删除index...为1 和2 的整行数据 df=df.drop([1,2],axis=0) print(df) """ #f=df.groupby(['班别']).get_group(901) #print(f) #按班别拆分开另存了一个班一个...x.name}.xlsx',index=False)) #按语文成绩排名,并添加‘语名’并输入数字 #df['语名']=df['语文'].rank(ascending=0,method='dense') #只是按数学成绩排名

    1.2K30

    怎样能自动按列01 列02 最大为列99,来设置列标题?

    一、前言 前几天在Python最强王者交流群有个粉丝咨询了这个问题:获取到数据表的列数比较简单,一般不超过99列,怎样能自动按列01 列02 最大为列99,来设置列标题?...二、实现过程 针对这个问题,【群除我佬】给了一个代码,如下所示: ["列0" + str(i) if len(str(i)) 列" + str(i) for i in range(1,100...)] 后来【~上善居士~ 郭百川】使用字符串格式化,也给了一个代码,如下所示: [f"列{i:02d}" for i in range(1,100)] 后来【Eric】也给了一个可行的代码,如下所示...: columns = [] for i in range(10): columns.append(f"列{i:02d}") print(columns) df.columns = ['00',...(str(i)) 列" + str(i) for i in range(1,df. shape[1]+1)] [f"列{i:02d}" for i in range(1,df.shape

    1.1K20

    Pandas 查找,丢弃列值唯一的列

    前言 数据清洗很重要,本文演示如何使用 Python Pandas 来查找和丢弃 DataFrame 中列值唯一的列,简言之,就是某列的数值除空值外,全都是一样的,比如:全0,全1,或者全部都是一样的字符串如...:已支付,已支付,已支付… 这些列大多形同虚设,所以当数据集列很多而导致人眼难以查找时,这个方法尤为好用。...上代码前先上个坑吧,数据列中的空值 NaN 也会被 Pandas 认为是一种 “ 值 ”,如下图: 所以只要把列的缺失值先丢弃,再统计该列的唯一值的个数即可。...代码实现 数据读入 检测列值唯一的所有列并丢弃 最后总结一下,Pandas 在数据清洗方面有非常多实用的操作,很多时候我们想不到只是因为没有接触过类似的案例或者不知道怎么转换语言描述,比如 “...列值唯一 ” --> “ 除了空值以外的唯一值的个数等于1 ” ,许多坑笔者都已经踩过了,欢迎查看我的其余文章,提建议,共同进步。

    5.7K21
    领券