Conda的下载和安装 什么是Conda? 官方定义:Package, dependency and environment management for any language—Python, R
本篇文章就带领大家用最简单地方式安装TF2.0正式版本(CPU与GPU),由我来踩坑,方便大家体验正式版本的TF2.0。
Anaconda安装:Anaconda是一个开源的Python发行版本,其包含了conda、Python等180多个科学包及其依赖项。使用Anaconda可以通过创建多个独立的Python环境,避免用户的Python环境安装太多不同版本依赖导致冲突。
安装/卸载第三包,注意对于windows用户请使用管理员身份打开命令端口,能避免各种莫名其妙的错误:
笔者通过官网、通过conda、通过豆瓣镜像源安装tensorflow在import时都会失败,报“ImportError: DLL load failed: 找不到指定的模块”的错误,最终成功的安装方式如下:
简单来说,Anaconda是Python的包管理器和环境管理器。先来解决一个初学者都会问的问题:我已经安装了Python,那么为什么还需要Anaconda呢?原因有以下几点:
Python分为3.X和2.X两个大版本。Python的3.0版本,常被称为Python 3000,或简称Py3k。相对于Python的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.X在设计的时候没有考虑向下相容,许多针对早期Python版本设计的程式都无法在Python 3.X上正常执行。大多数第三方库都正在努力地相容Python 3.X版本。
因为最近要做一个目标检测的比赛,需要用到labelme这款开源标注工具,所以安装了下
Anaconda介绍 Anaconda是python加强的一个全家桶套件,是目前最简单的方式来使用python进行机器学习和数据分析,它包含了250多个最流行的python科学计算包,并支持多种系统如windows,linux,mac,此外Anaconda最棒的一个特性就是使用conda来致力于简化包的管理和部署与pip命令的功能类似但更加强大。 Anaconda下载 Anaconda截止到目前最新的版本是基于Python3.6的Anaconda3 5.1.0,并分别提供了支持Python3.x和Pyhon
本教程为一个python入门教程,面向初学者,因此内容较为详细。主要内容为python环境配置教程,包括Anaconda,PyCharm,Jupyter notebook的安装与配置,及其常用技巧。教程以Windows系统为平台作演示,其他系统可能存在少许差异。
在学习推荐系统、机器学习、数据挖掘时,python是非常强大的工具,也有很多很强大的模块,但是模块的安装却是一件令人头疼的事情。
引言:这是《Python for Excel》的第二章《Chapter 2:Development Environment》中讲解Anaconda Python的部分。工欲善其技,必先利其器。了解和熟练操作好的开发工具,在学习和使用Python时就会更加专注于其自身,并且也有助于Python开发。
本文主要详细介绍了torch_pgu版本的安装,其中包括cuda和cudnn的环境配置图解流程,以及如何使用conda命令进行虚拟环境的创建、删除、使用等操作,列举conda的常用命令集,包括如何实现Windows之间的conda环境的迁移;除以之外,介绍了pycharm断点调试的详细流程和不同的调试方法。
Anaconda利用工具/命令conda来进行package和environment的管理,并且已经包含了Python和相关的配套工具。里面的环境是分离开的,需要用到什么环境可以进行切换,如同虚拟机一样。包管理与pip的使用类似,环境管理则允许用户方便地安装不同版本的python并可以快速切换。Anaconda则是一个打包的集合,里面预装好了conda、某个版本的python、众多packages、科学计算工具等等,所以也称为Python的一种发行版。
在学习任何新的编程语言时,我们都会在第一时间完成Hello World,以宣告自己开发环境的完美搭建。TensorFlow也不例外。TensorFlow充分考虑了各种软/硬件平台上的安装,本篇记录了在
下载可以去官网上下载,直接搜索找与你电脑对应的版本就好,国内清华镜像网站是:https://mirrors.tuna.tsinghua.edu.cn/anaconda/archive/
http://blog.csdn.net/pipisorry/article/details/47008981
发布者:全栈程序员栈长,转载请注明出处:https://javaforall.cn/174522.html原文链接:https://javaforall.cn
Python的优势不仅仅在于优雅的语言、简洁的语法,强大的第三方库是其能够用于各个领域的最重要杀手锏之一,如在数据科学领域的numpy、scipy、pandas、scikit-learn、jupyte
Python是一种面向对象的解释型计算机程序设计语言,其使用,具有跨平台的特点,可以在Linux、macOS以及Windows系统中搭建环境并使用,其编写的代码在不同平台上运行时,几乎不需要做较大的改动,使用者无不受益于它的便捷性。
参考的地址:https://zhuanlan.zhihu.com/p/32925500
适用语言:Python, R, Ruby, Lua, Scala, Java, JavaScript, C/C++, FORTRAN。
Python易用,但用好却不易,其中比较头疼的就是包管理和Python不同版本的问题,特别是当你使用Windows的时候。为了解决这些问题,有不少发行版的Python,比如WinPython、Anaconda等,这些发行版将python和许多常用的package打包,方便pythoners直接使用,此外,还有virtualenv、pyenv等工具管理虚拟环境。
之前写过一篇 windows 安装 miniconda 的文章, 后面在接触了 wsl 后发现用起来要比在原生 windows 上舒服很多, 毕竟我写 python 多是为了在 linux 服务器上跑, 用 wsl 会更顺滑一些, 虚拟环境同样选择更轻量的 miniconda
在认识 Anaconda 之前,先认识一下conda,Conda是在Windows、macOS和Linux上运行的开源软件包管理系统和环境管理系统。它可以快速安装、运行和更新软件包及其依赖项。那么既然都是用来安装包的,Conda和pip有啥区别呢?主要区别如下:
在本机开发完程序后,需要把程序移植到服务器之类的目标机上运行,或者分发给其余同事,经常会遇到第三方库管理,或者是不同项目之间用到的第三方库版本不一致,例如有时候需要tensorflow 1版本,有的时候希望用最新的2.3版本,这样导致了运行环境的管理复杂度,对于第三方库管理推荐通过Anaconda来解决这个痛点,通过不同的env解决环境配置问题。
摘要总结:本文主要介绍了如何安装 scikit-learn 库以及它的贡献者。首先,文章介绍了如何通过 pip 或 conda 安装 scikit-learn,并提供了安装示例。其次,文章列出了 scikit-learn 的贡献者名单,包括其名称、邮箱和贡献的模块。最后,文章提供了贡献者的维护建议,旨在帮助社区成员更好地参与和维护 scikit-learn 项目。
在Anaconda中conda可以理解为一个工具,也是一个可执行命令,其核心功能是包管理与环境管理。所以对虚拟环境进行创建、删除等操作需要使用conda命令。
安装Miniconda并配置好环境变量:去Miniconda官网找到对应版本(我选的是Windows installers中的Python 3.8 Miniconda3 Windows 64-bit),安装推荐教程;
相信很多IT从业者程序员都或多或少的存在一些强迫症属性,可能的表现包括:对软件安装的位置选择、代码编写的变量命名规范、文件归档分类等,有时候不能按照自己的预期进行配置总会暗自不爽——我个人是有这种感觉的。
原文链接:https://blog.csdn.net/weixin_43593330/article/details/93378987
今天遇到的新单词: editor n编辑,作者 general adj大致的一般的 repository n仓库 distribute v分配,发布 wrapper n封装 volume n音量
直接去anaconda官网下载安装文件即可,具体网站自行搜索。 官网提供linux版本,windows版本,mac版本。 同时提供Anaconda完整版和miniconda最小版(无软件界面的,仅支持命令行执行),新手推荐使用Anaconda版,熟悉之后推荐改用miniconda版,占用存储空间小,使用起来感受一样。
conda的前两个要点实际上是使许多软件包比pip更具优势。 由于pip是从源代码安装的,所以如果你无法编译源代码,那么安装它可能会很痛苦(这在Windows上尤其如此,但如果软件包有一些困难的C或FORTRAN库,甚至在Linux上也是如此)依赖)。 Conda从二进制文件安装,这意味着有人(例如Continuum)已经完成了编译软件包的艰苦工作,因此安装非常简单。如果您有兴趣构建自己的软件包,也有一些差异。 例如,pip建立在setuptools之上,而conda使用它自己的格式,这有一些优点(比如静态,而且Python不可知)。
前些时间笔者写了两篇关于Python实战开放的博客,得到了不错的读者反馈,收获了800+的赞同有收藏,博客列表如下:
Scrapy 必须运行在 CPython 或 PyPy 下的 Python 2.7 或 Python 3.5 及以上平台。如果您使用的是 Anaconda 或 Miniconda ,则可以从 conda-forge 安装该软件包,它包含适用于 Linux 、 Windows 和 OS X 的最新软件包。 如果要使用 conda命令安装 Scrapy 只需运行以下命令:
这是我写Ng的dp作业做的准备,好像需要安装特定版本的tensorflow 根据https://blog.csdn.net/ccgcccccc/article/details/89058445的配置要求来配置文件
在地球科学领域也得到了广泛应用,尤其是地球科学数据处理和可视化方面,比如地球科学数据分析和可视化库Iris,应用于数值模式数据处理的wrf-python,气候数据处理库CDAT以及地球科学可视化库NCL的Python版PyNGL。
最近学习python安装了Anaconda,但是去年安装的现在才开始学习(鸽子咕咕咕,这导致版本都已经比较老。 但是使用 Anaconda 升级包的时候,发现在图形界面升级时需要鼠标多次点击,同时默认源访问速度很慢(校园网环境基本没法用。
2017年1月18日,facebook下的torch7团队宣布Pytorch开源,官网地址:pytorch。2018.4月 ,PyTorch0.4.0已经有官方的Windows支持,
序 Python易用,但用好却不易,其中比较头疼的就是包管理和Python不同版本的问题,特别是当你使用Windows的时候。为了解决这些问题,有不少发行版的Python,比如WinPython、Anaconda等,这些发行版将python和许多常用的package打包,方便pythoners直接使用,此外,还有virtualenv、pyenv等工具管理虚拟环境。 个人尝试了很多类似的发行版,最终选择了Anaconda,因为其强大而方便的包管理与环境管理的功能。该文主要介绍下Anaconda,对Anacon
可以参考docker容器,功能就相当于在你电脑中搭了一个只有单个python的虚拟机,每个环境都是独立的,因此只要不删除base环境,删除其他虚拟环境都是不影响anaconda的本体。纯净python也有创建虚拟环境的功能,但是anaconda的好处是可以指定python版本,而纯净python的虚拟环境依赖python安装时的环境。
版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
我安装的是 anaconda 环境,所以直接打开 anaconda prompt 工具, pip install tensorflow 直接安装。
注意:Python中没有分号,而是用换行符替换;没有{},而使用冒号替换;构造函数中的self是显示出现的等,除此之外,Python和Java存在 很多相似的地方。
和其他大多数现代编程语言一样,Python对包和 模块的下载、存储以及管理有其自己的一套方法。但是当我们同时开发多个项目工程的时候,不同的项目会将第三方的包存放在相同的路径下。这就意味着,如果有两个工程依赖同一个包,但是所需要的版本却不一样,比如项目A依赖v1.0.0,而项目B依赖v2.0.0。由于Python无法根据版本来区分包的安装路径,那么此时,就会发生版本冲突。
我以官方文档为主线,开始对TensorFlow的学习。这期间会把我的理解进行持续的输出,作为《TensorFlow从0到1》系列。它不会止于翻译和笔记、语言和工具,而是坚持通过启发性的方式,循序渐进的构建理解,搭建一个坚实可靠的、连接“零基础”与“机器学习”领域之间的缓坡道,或许能帮你起步。 更期待一起探索的学习者都能开辟出自己的路,仅把这里作为一个参照。 除了TensorFlow文档之外,我还会参考(持续增加中): Neural Networks and Deep Learning(中译版),Michea
要搞清楚什么是虚拟环境,首先要清楚Python的环境指的是什么。当我们在执行python test.py时,思考如下问题:
领取专属 10元无门槛券
手把手带您无忧上云