首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
您找到你想要的搜索结果了吗?
是的
没有找到

Linux进程间通信(四) - 共享内存

共享内存的优势 采用共享内存通信的一个显而易见的好处是效率高,因为进程可以直接读写内存,而不需要任何数据的拷贝。对于像管道和消息队列等通信方式,则需要在内核和用户空间进行四次的数据拷贝,而共享内存则只拷贝两次数据:一次从输入文件到共享内存区,另一次从共享内存区到输出文件。实际上,进程之间在共享内存时,并不总是读写少量数据后就解除映射,有新的通信时,再重新建立共享内存区域。而是保持共享区域,直到通信完毕为止,这样,数据内容一直保存在共享内存中,并没有写回文件。共享内存中的内容往往是在解除映射时才写回文件的。因

06

一篇文章彻底讲懂malloc的实现(ptmalloc)

C语言提供了动态内存管理功能, 在C语言中, 程序员可以使用 malloc() 和 free() 函数显式的分配和释放内存. 关于 malloc() 和free() 函数, C语言标准只是规定了它们需要实现的功能, 而没有对实现方式有什么限制, 这多少让那些追根究底的人感到有些许迷茫, 比如对于 free() 函数, 它规定一旦一个内存区域被释放掉, 那么就不应该再对其进行任何引用, 任何对释放区域的引用都会导致不可预知的后果 (unperdictable effects). 那么, 到底是什么样的不可预知后果呢? 这完全取决于内存分配器(memory allocator)使用的算法. 这篇文章试图对 Linux glibc 提供的 allocator 的工作方式进行一些描述, 并希望可以解答上述类似的问题. 虽然这里的描述局限于特定的平台, 但一般的事实是, 相同功能的软件基本上都会采用相似的技术. 这里所描述的原理也许在别的环境下会仍然有效. 另外还要强调的一点是, 本文只是侧重于一般原理的描述, 而不会过分纠缠于细节, 如果需要特定的细节知识, 请参考特定 allocator 的源代码. 最后, 本文描述的硬件平台是 Intel 80x86, 其中涉及的有些原理和数据可能是平台相关的.

01
领券