首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

使用nn.fold在pytorch中重叠和添加张量

在PyTorch中,使用nn.fold函数可以实现张量的重叠和添加操作。

nn.fold函数是PyTorch中的一个函数,用于将一个张量按照指定的大小进行重叠和添加操作。具体来说,它将一个多维张量按照指定的大小进行切割,并将切割后的小块张量按照指定的步长进行重叠和添加。

nn.fold函数的参数包括输入张量、输出大小、窗口大小和步长。其中,输入张量是需要进行重叠和添加操作的张量;输出大小是重叠和添加后的张量的大小;窗口大小是每个小块张量的大小;步长是每次移动的步长。

使用nn.fold函数可以实现一些图像处理任务,例如图像超分辨率重建、图像去噪等。在这些任务中,可以将输入图像切割成小块,并对每个小块进行处理,然后将处理后的小块重叠和添加得到最终的输出图像。

腾讯云提供了一系列与深度学习和计算机视觉相关的产品和服务,可以帮助开发者进行模型训练、推理和部署。其中,推荐的产品是腾讯云的AI智能图像处理服务,该服务提供了图像超分辨率重建、图像去噪等功能,可以方便地实现图像处理任务。

更多关于腾讯云AI智能图像处理服务的信息,可以参考腾讯云官方文档:AI智能图像处理

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

PNEN:金字塔结构与Non-local非局部结构联合增强,提升low-level图像处理任务性能

现在,用于low-level图像处理任务的神经网络通常是通过堆叠卷积层来实现的,每个卷积层仅包含来自一个小范围的上下文信息。随着更多卷积层的堆叠,卷积神经网络可以探索更多的上下文特征。但是,要充分利用远距离依赖关系较困难并且需要较多的计算量。由此,本文提出了一种新颖的non-local模块:金字塔non-local模块,以建立每个像素与所有剩余像素之间的连接。所提出的模块能够有效利用不同尺度的低层特征之间的成对依赖性。具体而言,首先通过学习由具有全分辨率的查询特征图和具有缩减分辨率的参考特征图所构成的金字塔结构来捕获多尺度相关性,然后利用多尺度参考特征的相关性来增强像素级特征表示。整个计算过程在同时考虑了内存消耗和计算成本。基于所提出的模块,本文还设计了一个金字塔non-local增强网络用于图像恢复任务中边缘保留的图像平滑处理,在比较三种经典的图像平滑算法中达到了最先进的性能。另外,可以将金字塔non-local模块直接合并到卷积神经网络中,以进行其他图像恢复任务,并可以将其集成到用于图像去噪和单图像超分辨率的现有方法中,以实现性能的持续改善。

02

VRT : 视频恢复变压器

视频恢复(如视频超分辨率)旨在从低质量帧恢复高质量帧。与单个图像恢复不同,视频恢复通常需要利用多个相邻但通常不对齐的视频帧的时间信息。现有的视频恢复方法主要分为两大类:基于滑动窗口的方法和循环方法。如图 1(a) 所示,基于滑动窗口的方法通常输入多个帧来生成单个 HQ 帧,并以滑动窗口的方式处理长视频序列。在推理中,每个输入帧都要进行多次处理,导致特征利用效率低下,计算成本增加。其他一些方法是基于循环架构的。如图 1(b) 所示,循环模型主要使用之前重构的 HQ 帧进行后续的帧重构。由于循环的性质,它们有三个缺点。首先,循环方法在并行化方面受到限制,无法实现高效的分布式训练和推理。其次,虽然信息是逐帧积累的,但循环模型并不擅长长期的时间依赖性建模。一帧可能会强烈影响相邻的下一帧,但其影响会在几个时间步长后迅速消失。第三,它们在少帧视频上的性能明显下降。

01

图像超分辨率重建算法,让模糊图像变清晰(附数据和代码)

图像分辨率是一组用于评估图像中蕴含细节信息丰富程度的性能参数,包括时间分辨率、空间分辨率及色阶分辨率等,体现了成像系统实际所能反映物体细节信息的能力。相较于低分辨率图像,高分辨率图像通常包含更大的像素密度、更丰富的纹理细节及更高的可信赖度。但在实际上情况中,受采集设备与环境、网络传输介质与带宽、图像退化模型本身等诸多因素的约束,我们通常并不能直接得到具有边缘锐化、无成块模糊的理想高分辨率图像。提升图像分辨率的最直接的做法是对采集系统中的光学硬件进行改进,但是由于制造工艺难以大幅改进并且制造成本十分高昂,因此物理上解决图像低分辨率问题往往代价太大。由此,从软件和算法的角度着手,实现图像超分辨率重建的技术成为了图像处理和计算机视觉等多个领域的热点研究课题。

05

A Comparison of Super-Resolution and Nearest Neighbors Interpolation

随着机器视觉和深度卷积神经网络(CNNs)被应用于新的问题和数据,网络架构的进步和这些网络的应用都得到了快速的发展。然而,在大多数分类和目标检测应用中,图像数据是这样的,感兴趣的对象相对于场景来说是很大的。这可以在最流行的公共基准数据集ImageNet、VOC、COCO和CIFAR中观察到。这些数据集和它们对应的挑战赛继续推进网络架构比如SqueezeNets, Squeeze-and-Excitation Networks, 和 Faster R-CNN。对于DigitalGlobe的WorldView-3卫星将每个像素表示为30平方厘米的区域的卫星数据。在这些场景中,在大于3000x3000的场景中像汽车这样的物体通常是13x7像素或更小。这些大型场景需要预处理,以便在现代目标检测网络中使用,包括将原始场景切割成更小的组件用于训练和验证。除此之外,在停车场和繁忙的道路等区域,车辆等物体往往位于较近的位置,这使得车辆之间的边界在卫星图像中难以感知。缺乏公共可用的标记数据也阻碍了对这个应用程序空间的探索,只有xView Challenge数据集拥有卫星捕获的带有标记对象的图像。等空中数据集分类细粒度特性在空中图像(COFGA),大规模数据集在空中图像(队伍),对象检测和汽车开销与上下文(COWC)也有类似的对象类,但存在一个较低的地面样本距离(德牧)使他们更容易获得良好的对象检测结果,但限制了实际应用。考虑到将CNNs应用于卫星数据所面临的挑战,将升级作为预处理步骤对实现准确探测目标的良好性能至关重要。深度学习的进步导致了许多先进的体系结构可以执行升级,在低分辨率图像上训练网络,并与高分辨率副本进行对比验证。尽管关于这一主题的文献越来越多,但超分辨率(SR)在目标检测和分类问题上的应用在很大程度上还没有得到探索,SR与最近邻(NN)插值等也没有文献记载。SR网络作为卫星图像中目标检测的预处理步骤,具有良好的应用前景,但由于其深度网络包含数百万个必须正确训练的参数,因此增加了大量的计算成本。与SR不同的是,NN仍然是最基本的向上缩放方法之一,它通过取相邻像素并假设其值来执行插值,从而创建分段阶跃函数逼近,且计算成本很小。

03

基于深度卷积神经网络的图像超分辨率重建(SRCNN)学习笔记

目前,单幅图像的超分辨率重建大多都是基于样本学习的,如稀疏编码就是典型的方法之一。这种方法一般先对图像进行特征提取,然后编码成一个低分辨率字典,稀疏系数传到高分辨率字典中重建高分辨率部分,然后将这些部分汇聚作为输出。以往的SR方法都关注学习和优化字典或者建立模型,很少去优化或者考虑统一的优化框架。 为了解决上述问题,本文中提出了一种深度卷积神经网络(SRCNN),即一种LR到HR的端对端映射,具有如下性质: ①结构简单,与其他现有方法相比具有优越的正确性,对比结果如下: ②滤波器和层的数量适中,即使在CPU上运行速度也比较快,因为它是一个前馈网络,而且在使用时不用管优化问题; ③实验证明,该网络的复原质量可以在大的数据集或者大的模型中进一步提高。 本文的主要贡献: (1)我们提出了一个卷积神经网络用于图像超分辨率重建,这个网络直接学习LR到HR图像之间端对端映射,几乎没有优化后的前后期处理。 (2)将深度学习的SR方法与基于传统的稀疏编码相结合,为网络结构的设计提供指导。 (3)深度学习在超分辨率问题上能取得较好的质量和速度。 图1展示了本文中的方法与其他方法的对比结果:

02

技术解码 | 视频云全链路媒体处理解决方案

随着近几年视频行业的爆发增长,各个业务场景对视频处理的需求越来越高。本周的技术解码就由段争志老师带大家一起探秘腾讯云视频云全链路媒体处理解决方案中的关键技术。 近几年视频行业喷井式爆发,短视频APP、社交媒体、电商带货、直播会议、线上教育等等各种泛媒体类应用大规模增长的同时,人们对高清/超高清、低延时、高画质的需求也越来越强烈。腾讯云视频云依托自身多年的视频技术的积累以及众多业务应用的落地优化实践,不断完善自身产品体系,优化性能,结合用户业务场景不断创新,提供一整套集视频质检、画质修复增强、编码、

02

深度学习经典网络解析:2.AlexNet

在上篇深度学习经典网络解析(一):LeNet-5中我们提到,LeNet-5创造了卷积神经网络,但是LeNet-5并没有把CNN发扬光大,是CNN真正开始走进人们视野的是今天要介绍的——AlexNet网络。AlexNet网络源自于《ImageNet Classification with Deep Convolutional Neural Networks》这篇论文。作者是是Hinton率领的谷歌团队(Alex Krizhevsky,Ilya Sutskever,Geoffrey E. Hinton),Hinton在上一篇博客我们也曾介绍过,他是深度学习之父,在人工智能寒冬时期,Hinton一直就默默地坚持深度网络的方向,终于在2006年的《Science》上提出了DNN,为如今深度学习的繁荣奠定了基础。AlexNet利用了两块GPU进行计算,大大提高了运算效率,并且在ILSVRC-2012竞赛中获得了top-5测试的15.3%error rate, 获得第二名的方法error rate 是 26.2%,可以说差距是非常的大了,足以说明这个网络在当时给学术界和工业界带来的冲击之大。

03
领券