首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

分布(一)利用python绘制直方图

ax.hist(df["sepal_length"], edgecolor="black") plt.show() 直方图 定制多样化的直方图 自定义直方图一般是结合使用场景对相关参数进行修改,并辅以其他的绘图知识...通过seaborn绘制多样化的直方图 seaborn主要利用displot和histplot绘制直方图,可以通过seaborn.displot[1]和seaborn.histplot[2]了解更多用法...同样的jointplot也有很多参数可以自定义,并且可以使用更为灵活的JointGrid。...(x=df["sepal_length"], y=df["sepal_width"], kind='hex') # 六边形核密度估计图 # 创建高级边缘图-边缘图叠加 g4 = sns.jointplot...和matplotlib的hist可以快速绘制直方图,并通过修改参数或者辅以其他绘图知识自定义各种各样的直方图来适应相关使用场景。

43810

关于数据的可视化-直方图和二维频次直方图

就像将一维数组分为区间创建一维频次直方图一样,我们也可以将二维 数组按照二维区间进行切分,来创建二维频次直方图。...一维直方图主要用hist来展示,二维的关系可以用散点图、多hist叠加、hist2d或seaborn来展现,seaborn的主要数据类型是pandas,因此需要转换,又复习了一下Numpy转pandas...,dpi=80) kwargs = dict(histtype='stepfilled', alpha=0.3, density=True, bins=10) # 分别查看不同类型鸢尾花在四个维度上的直方图...for i in range(4): ax = fig.add_subplot(2, 2, i+1) # 分别获取三种鸢尾花,在同一刻度上展示直方图,通过不同颜色和透明度进行叠加展示...(type2, **kwargs) plt.hist(type3, **kwargs) plt.title(titles[i]) plt.show() image.png # 构造身高和体重的线性关系数据

1.2K20
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    使用BPF之前和之后生成直方图过程的对比

    以bitehist为例: 使用BPF之前: 1、在内核中:开启磁盘IO事件的插桩观测。 2、在内核中,针对每个事件:向perf缓冲区写入一条记录。...如果使用了跟踪点技术(推荐方式),记录中会包含关于磁盘IO的几个元数据字段。 3、在用户空间:周期性地将所有事件的缓冲区内容复制到用户空间4。在用户空间:遍历每个事件,解析字节字段的事件元数据字段。...在用户空间:生成字节字段的直方图摘要。 其中步骤2到步骤4对于高I/O的系统来说性能开销非常大。...它只获取字节字段,并将其保存到自定义的 BPF直方图映射数据结构中。 3、在用户空间:一次性读取BPF直方图映射表并输出结果。...这个过程避免了将事件复制到用户空间并再次对其处理的成本,也避免了对未使用的元数据字段的复制。如前面的程序输出截图所示,唯一需要复制到用户空间的数据是“count”列,其是一个数字数组。

    13210

    详解seaborn可视化中的kdeplot、rugplot、distplot与jointplot

    Python大数据分析 一、seaborn简介 seaborn是Python中基于matplotlib的具有更多可视化功能和更优美绘图风格的绘图模块,当我们想要探索单个或一对数据分布上的特征时,可以使用到...,且还可以在直方图的基础上施加kdeplot和rugplot的部分内容,是一个功能非常强大且实用的函数,其主要参数如下: a:一维数组形式,传入待分析的单个变量 bins:int型变量,用于确定直方图中显示直方的数量...,默认为None,这时bins的具体个数由Freedman-Diaconis准则来确定 hist:bool型变量,控制是否绘制直方图,默认为True kde:bool型变量,控制是否绘制核密度估计曲线,...(注意这里必须关闭kde和fit绘图的部分,否则纵轴依然显示密度),利用hist_kws传入字典调整直方图部分色彩和透明度,利用rug_kws传入字典调整rugplot部分小短条色彩: ax = sns.distplot...kind='kde', space=0, color='g') jointplot还支持图层叠加

    5K32

    (数据科学学习手札62)详解seaborn中的kdeplot、rugplot、distplot与jointplot

    一、简介   seaborn是Python中基于matplotlib的具有更多可视化功能和更优美绘图风格的绘图模块,当我们想要探索单个或一对数据分布上的特征时,可以使用到seaborn中内置的若干函数对数据的分布进行多种多样的可视化...三、distplot   seaborn中的distplot主要功能是绘制单变量的直方图,且还可以在直方图的基础上施加kdeplot和rugplot的部分内容,是一个功能非常强大且实用的函数,其主要参数如下...修改norm_hist参数为False使得纵轴显示的不再是密度而是频数(注意这里必须关闭kde和fit绘图的部分,否则纵轴依然显示密度),利用hist_kws传入字典调整直方图部分色彩和透明度,利用rug_kws...修改kind为'kde'来将直方图和散点图转换为核密度估计图,并将边际轴的留白大小设定为0: ax = sns.jointplot(x='sepal_length',y='sepal_width',data...根据你的具体需要还可以叠加出更加丰富的图像。

    3.2K50

    数据科学 IPython 笔记本 8.8 直方图,分箱和密度

    之前,我们预览了 Matplotlib 直方图函数(参见“比较,掩码和布尔逻辑”),一旦执行了常规的导入,它在一行中创建一个基本直方图: %matplotlib inline import numpy...) # [ 12 190 468 301 29] 二维直方图和分箱 就像我们通过将数字放入桶中,创建一维直方图一样,我们也可以通过将点放入通过二维的桶中,来创建二维直方图。...plt.hexbin:六边形分箱 二维直方图创建了横跨坐标轴的正方形细分。这种细分的另一种自然形状是正六边形。...有关选择合适的平滑长度的文献非常多:gaussian_kde使用经验法则,试图为输入数据找到近似最佳的平滑长度。...对于基于 KDE 的可视化,使用 Matplotlib 往往过于冗长。在“可视化和 Seaborn”中讨论的 Seaborn 库,提供了更为简洁的 API 来创建基于 KDE 的可视化。

    57620

    非参数检验方法,核密度估计简介

    在深入研究用于非参数估计密度的核密度估计(KDE)之前,我们先看一个例子,一个看似非参数的问题可以转化为参数推断问题,然后我们将介绍非参数统计和 KDE 起着重要作用的例子。...非参数地估计密度的一些想法可以是将直方图视为密度的估计。 如果观察的数量趋于无穷,则binwidth趋于0。直方图收敛于密度。 上述结果主要都是来自于统计基本定理。...选择bandwidth (平滑参数) 在每个点(在观察中)叠加密度 K(x),并取所有 K(x) 的平均值。...X 跟随 f(x) KDE f(x) 的期望是期望的样本均值,所以: 上面的式子将在方差计算中进一步使用 KDE X ~ f(x) 的方差 所以在理想情况下,我们希望 h 是 n 的函数,使得 h...KDE 的应用场景很广泛,以下是一些常见的应用场景: 数据可视化:KDE 可以用来可视化数据分布,替代直方图或箱线图等传统统计图表,让人们更清晰地理解数据的分布情况。

    69610

    5种方法教你用Python玩转histogram直方图

    本篇博主将要总结一下使用Python绘制直方图的所有方法,大致可分为三大类(详细划分是五类,参照文末总结): 纯Python实现直方图,不使用任何第三方库 使用Numpy来创建直方图总结数据 使用matplotlib...使用Pandas库的话,你可以使用 plot.kde() 创建一个核密度的绘图,plot.kde() 对于 Series和DataFrame数据结构都适用。...现在,我们可以在同一个Matplotlib轴上绘制每个直方图以及对应的kde,使用pandas的plot.kde()的好处就是:它会自动的将所有列的直方图和kde都显示出来,用起来非常方便,具体代码如下...对于直方图而言,Seaborn有 distplot() 方法,可以将单变量分布的直方图和kde同时绘制出来,而且使用及其方便,下面是实现代码(以上面生成的d为例): import seaborn as...从任意数据结构中,创建一个高度定制化可调节的直方图 推荐使用基于np.histogram()的Pyplot.hist()函数,被频繁使用,简单易懂。

    2K10

    5种方法教你用Python玩转histogram直方图

    本篇博主将要总结一下使用Python绘制直方图的所有方法,大致可分为三大类(详细划分是五类,参照文末总结): 纯Python实现直方图,不使用任何第三方库 使用Numpy来创建直方图总结数据 使用matplotlib...使用Pandas库的话,你可以使用 plot.kde() 创建一个核密度的绘图,plot.kde() 对于 Series和DataFrame数据结构都适用。...现在,我们可以在同一个Matplotlib轴上绘制每个直方图以及对应的kde,使用pandas的plot.kde()的好处就是:它会自动的将所有列的直方图和kde都显示出来,用起来非常方便,具体代码如下...对于直方图而言,Seaborn有 distplot() 方法,可以将单变量分布的直方图和kde同时绘制出来,而且使用及其方便,下面是实现代码(以上面生成的d为例): import seaborn as...从任意数据结构中,创建一个高度定制化可调节的直方图 推荐使用基于np.histogram()的Pyplot.hist()函数,被频繁使用,简单易懂。

    4.3K10

    Python Seaborn (3) 分布数据集的可视化

    默认情况下,这将绘制一个直方图,并拟合出核密度估计(KDE)。 ? 直方图 直方图应当是非常熟悉的函数了,在matplotlib中就存在hist函数。...核密度估计(KDE) 或许你对核密度估计(KDE,Kernel density estimaton)可能不像直方图那么熟悉,但它是绘制分布形状的有力工具。...如同直方图一样,KDE图会对一个轴上的另一轴的高度的观测密度进行描述: ? 绘制KDE比绘制直方图更有计算性。所发生的是,每一个观察都被一个以这个值为中心的正态( 高斯)曲线所取代。 ?...在seaborn中这样做的最简单的方法就是在jointplot()函数中创建一个多面板数字,显示两个变量之间的双变量(或联合)关系以及每个变量的单变量(或边际)分布和轴。 ?...呈现数据集中成对的关系 要在数据集中绘制多个成对双变量分布,可以使用pairplot()函数。这将创建一个轴的矩阵,并显示DataFrame中每对列的关系。

    2.2K10

    seaborn从入门到精通03-绘图功能实现03-分布绘图distributional plots

    直方图是一种条形图,其中表示数据变量的轴被划分为一组离散的bins,并且每个bin内的观测值的计数使用相应的bar的高度表示: sns.displot(penguins, x="flipper_length_mm...To choose the size directly, set the binwidth parameter: 容器的大小是一个重要的参数,使用错误的容器大小可能会通过模糊数据的重要特征或通过随机可变性创建明显的特征而产生误导...a continuous density estimate: 直方图旨在通过对观察结果进行分类和计数来近似生成数据的底层概率密度函数。...KDE图不是使用离散箱,而是用高斯核平滑观察,产生连续的密度估计: 案例1-核密度估计图 sns.displot(penguins, x="flipper_length_mm", kind="kde...a plot with too many contours can get busy: 二元KDE图的等高线方法更适合评估重叠 案例3-双变量分布直方图与核密度图-bin大小和颜色 To aid

    31130

    Seaborn从零开始学习教程(三)

    绘制单变量分布 在 seaborn 中,快速观察单变量分布的最方便的方法就是使用 distplot() 函数。默认会使用直方图 (histogram) 来绘制,并提供一个适配的核密度估计(KDE)。...绘制 KDE 比绘制直方图需要更多的计算。它的计算过程是这样的,每个观察点首先都被以这个点为中心的正态分布曲线所替代。...KDE 的带宽参数(bw)控制着密度估计曲线的宽窄形状,有点类似直方图中的 bins 参数的作用。它对应着我们上面绘制的 KDE 的宽度。...在 seaborn 中最简单的方法就是使用 joinplot() 函数,它能够创建一个多面板图形来展示两个变量之间的联合关系,以及每个轴上单变量的分布情况。...可视化数据集成对关系 为了绘制数据集中多个成对的双变量,你可以使用 pairplot() 函数。这创建了一个轴矩阵,并展示了在一个 DataFrame 中每对列的关系。

    2K10

    快速掌握Seaborn分布图的10个例子

    通过创建适当和设计良好的可视化,我们可以发现数据中的底层结构和关系。 分布在数据分析中起着至关重要的作用。它们帮助我们检测异常值和偏态,或获得集中趋势(平均值、中值和模态)度量的概述。...Seaborn的离散函数允许创建3种不同类型的分布区,分别是: 柱状图 Kde(核密度估计)图 Ecdf图 我们只需要调整kind参数来选择plot的类型。 示例1 第一个例子是创建一个基本直方图。...例子6 displot函数还允许生成二维直方图。因此,我们得到了关于两列中值的观察值(即行)分布的概述。 让我们使用价格和距离列创建一个。我们只是将列名传递给x和y参数。...因此,我们可以为每个列传递不同的比例。 例子7 Kde图还可以用于可视化变量的分布。它们和直方图很相似。然而,kde图使用连续的概率密度曲线来表示分布,而不是使用离散的箱。...示例8 与直方图类似,可以为不同的类别分别绘制kde图。我们的数据集包含房屋的区域信息。让我们看看不同地区的价格变化。

    1.2K30

    机器学习模型的数据预处理和可视化

    我们能对数据做很多事,但是针对目前这个练习,我们将用不同的的可视化工具,例如分布图,方框图,KDE,以及小提琴图等,来分析数据,并回答以下问题: 混合巧克力和纯巧克力的平均评分是多少?...将数据可视化 维基百科的定义:许多学科将数据可视化视为视觉传达的现代等价物。 它涉及创建和研究数据的可视化表示。 为了清晰有效地传递信息,数据可视化使用统计图形,图表,信息图形和其他工具。...下面时REF列: sb.distplot(chocolate_data['REF'],kde = False)plt.show() ? REF直方图 REF列是收到的评级的参考编号。...在直方图中,当您对比许多分布时,它们不能很好地叠加并占用大量空间来并排显示它们。 这里,我们将为巧克力生产设施和客户提供的评级创建一个盒子图。...KDE (kernel density plot)-让我们尝试使用KDE来绘制同类的图 Blended = chocolate_data.loc[chocolate_data.BlendNotBlend

    1.2K30

    seaborn从入门到精通03-绘图功能实现03-分布绘图distributional plots

    直方图是一种条形图,其中表示数据变量的轴被划分为一组离散的bins,并且每个bin内的观测值的计数使用相应的bar的高度表示: sns.displot(penguins, x="flipper_length_mm...To choose the size directly, set the binwidth parameter: 容器的大小是一个重要的参数,使用错误的容器大小可能会通过模糊数据的重要特征或通过随机可变性创建明显的特征而产生误导...a continuous density estimate: 直方图旨在通过对观察结果进行分类和计数来近似生成数据的底层概率密度函数。...KDE图不是使用离散箱,而是用高斯核平滑观察,产生连续的密度估计: 案例1-核密度估计图 sns.displot(penguins, x="flipper_length_mm", kind="kde...a plot with too many contours can get busy: 二元KDE图的等高线方法更适合评估重叠 案例3-双变量分布直方图与核密度图-bin大小和颜色 To aid

    32920

    概率密度估计介绍

    箱子数量和大小的设置也是有讲究的。...另外我们知道正态分布只由两个参数决定(假设是单变量情况),即均值和方差,因此我们通过求出观测值的均值和方差,我们便求解出了这个直方图所对应的概率密度函数的估计。...而非参数密度估计其实是使用所有样本来进行密度估计,换句话说每个样本的观测值都被视为参数。...KDE其实就是一个数学函数,它返回随机变量给定值的概率。Kernel(核函数)能够有效地平滑或插值随机变量结果范围内的概率,使得概率和等于1。...Note: 核密度估计其实就是通过核函数(如高斯)将每个数据点的数据+带宽当作核函数的参数,得到N个核函数,再线性叠加就形成了核密度的估计函数,归一化后就是核密度概率密度函数了。

    1.2K20

    数据可视化(6)-Seaborn系列 | 直方图distplot()

    直方图 seaborn.distplot() 直方图,质量估计图,核密度估计图 该API可以绘制分别直方图和核密度估计图,也可以绘制直方图和核密度估计图的合成图 通过设置默认情况下,是绘制合成图,设置情况图下...如果设置name属性,则该名称将用于标记数据轴; 以下是可选参数: bins: matplotlib hist()的参数 或者 None 作用:指定直方图规格,若为None,则使用Freedman-Diaconis...hist:bool 是否绘制(标准化)直方图 kde:bool 是否绘制高斯核密度估计图 rug:bool 是否在支撑轴上绘制rugplot()图 {hist,kde,rug,fit} _kws:...matplotlib.pyplot as plt sns.set() #构建数据 np.random.seed(0) x = np.random.randn(100) """ 案例1:显示默认绘图,其中包含内核密度估计值和直方图...pandas来设置x 轴标签 和y 轴标签 x = pd.Series(x, name="x variable") """ 案例2:绘制直方图和核函数密度估计图 """ sns.distplot(x)

    15.1K01

    概率密度估计介绍

    箱子数量和大小的设置也是有讲究的。...另外我们知道正态分布只由两个参数决定(假设是单变量情况),即均值和方差,因此我们通过求出观测值的均值和方差,我们便求解出了这个直方图所对应的概率密度函数的估计。...而非参数密度估计其实是使用所有样本来进行密度估计,换句话说每个样本的观测值都被视为参数。...KDE其实就是一个数学函数,它返回随机变量给定值的概率。Kernel(核函数)能够有效地平滑或插值随机变量结果范围内的概率,使得概率和等于1。...Note: 核密度估计其实就是通过核函数(如高斯)将每个数据点的数据+带宽当作核函数的参数,得到N个核函数,再线性叠加就形成了核密度的估计函数,归一化后就是核密度概率密度函数了。

    1.2K00
    领券