本文内容:Python 数据处理:Pandas库的使用 ---- Python 数据处理:Pandas库的使用 1.Pandas 数据结构 1.1 Series 1.2 DataFrame 2.基本功能...- Pandas 是基于 NumPy 数组构建的,特别是基于数组的函数和不使用 for 循环的数据处理。...虽然 Pandas 采用了大量的 NumPy 编码风格,但二者最大的不同是 Pandas 是专门为处理表格和混杂数据设计的。而 NumPy 更适合处理统一的数值数组数据。...1.Pandas 数据结构 要使用 Pandas,首先就得熟悉它的两个主要数据结构:Series和DataFrame。...选项: 方法 描述 'average' 默认:在相等分组中,为各个值分配平均排名 'min' 使用整个分组的最小排名 'max' 使用整个分组的最大排名 'first' 按值在原始数据中的出现顺序分配排名
目前python生态中,已经有好几款能通过操作界面,自动生成 pandas 代码的工具库。...数据探索是一件非常"反代码"的事情,这是因为在你拿到数据之后,此时你并不知道下一步该怎么处理它。所以通常情况下,我会选择使用 excel 的透视表完成这项任务。但是往往需要把最终的探索过程自动化。...这就迫使我使用pandas做数据探索。 我会经常写出类似下面的代码结构: 其实那时候我已经积累了不少常用的pandas自定义功能模块。但是,这种模式不方便分享。...既然上面说的 tableau prep 这么好,为什么不直接用它?因为它是收费的。并且它也无法做到自定义功能。 难道就不能破局吗?其实我从未放弃。...我也已经推出了一系列相关的实战示例视频,其实我之所以学习 nicegui,正是希望为 pandas 以及 pybi-next 打造各种辅助工具。
一、前言 Pandas(Python Data Analysis Library)是基于是基于 NumPy 的数据分析模块,它提供了大量标准数据模型和高效操作大型数据集所需的工具,可以说 Pandas...是使得 Python 能够成为高效且强大的数据分析环境的重要因素之一。...其中,Series 和 DataFrame 是 Pandas 中最常用的两个对象,分别对应于一维和二维数据的处理(Pandas 还有对三维甚至多维数据处理的 Panel 对象,但不太常用)。...而 Index 对象则用于为数据建立索引以方便数据操作。...然后,它从这些行中的 “交易额” 列中提取数值,并使用.sum()方法计算这些值的总和。
安装pandas 1. Anaconda 安装pandas、Python和SciPy最简单的方式是用Anaconda。Anaconda是关于Python数据分析和科学计算的分发包。...Miniconda 使用Anaconda会安装一百多个依赖包,如果想灵活控制安装的依赖包或带宽有限,使用Miniconda是个不错的选择。...Miniconda允许先创建包含Python的安装包,然后用conda安装其他的依赖包。 3. Pypi pandas可以通过pip安装,但要安装相关的依赖包。...包管理器 可以用linux的包管理器进行安装,如 sudo apt-get install python-pandas zypper in python-pandas 5....源码位于http://github.com/pydata/pandas,安装过程为 git clone git://github.com/pydata/pandas.git cd pandas python
if __name__ == '__main__': print("hello python") 运行结果: 图片 二、数据类型 在使用数据类型之前,先来了解下python中的注释: 单行注释...("女") 运行结果: 图片 2. for循环 2.1 for循环基本语法 学习for循环之前,先来了解下range,range也是python中一个容器类型,表示一个区间,定义语法为:range([...开始],结束,[步长]) for循环可以遍历range中的内容,for循环的语法为:for 变量名 in 容器: for i in range(0, 10, 2): print...逻辑运算符 符号 描述 and 并且 or 或者 not 非 五、容器 Java中有很多类型的容器,像List,Map等,他们用于存放指定类型的数据,Python中也有对应的容器 1....) 运行结果: 图片 2.4 字典元素的遍历 遍历还是使用for循环即可,其中由于python的解构特性,for循环变量也支持多个: for k, v in d.items():
通常情况下,我们使用 Pandas 来读取 Excel 数据,可以很方便的把数据转化为 DataFrame 类型。...但是现实情况往往很骨干,当我们遇到结构不是特别良好的 Excel 的时候,常规的 Pandas 读取操作就不怎么好用了,今天我们就来看两个读取非常规结构 Excel 数据的例子 本文使用的测试 Excel...2 行 我们也可以将列定义为数字列表 df = pd.read_excel(src_file, header=1, usecols=[1,2,3,4,5]) 也可以通过列名称来选择所需的列数据 df...,在我们的 Excel 数据中,我们有一个想要读取的名为 ship_cost 的表,这该怎么获取呢 在这种情况下,我们可以直接使用 openpyxl 来解析 Excel 文件并将数据转换为 pandas..., 接下来就是将该范围转换为 Pandas DataFrame # 获取数据范围 data = sheet[lookup_table.ref] rows_list = [] # 循环获取数据 for
目录 前言 distinct方法的使用 sortBy方法的使用 distinct和sortBy方法的应用场景 结束语 前言 不用多说想必大家都知道Python作为一种广泛使用的编程语言,在数据计算领域有着强大的功能和丰富的库...distinct方法的使用 先来分享一下distinct方法的使用,distinct方法是用于去除数据集中的重复元素,返回一个去重后的新数据集,使每个元素都是唯一的,在Python中,我们可以使用集合(...方法的场景,更多时候distinct和sortBy方法可以在数据计算中相互配合使用,以实现更复杂的数据处理需求。...结束语 通过上面的介绍,Python中的distinct和sortBy方法为数据计算领域提供了强大的功能,distinct和sortBy是基于Python的常用数据计算方法,主要是用于去重和排序操作,通过使用这些方法...也希望本文对各位读者在基于Python的数据计算中的distinct和sortBy方法有所帮助,并激发大家在实际应用中的创造力和实践能力,进而提升数据处理的效率和准确性!
Series对象和DataFrame的列数据提供了cat、dt、str三种属性接口(accessors),分别对应分类数据、日期时间数据和字符串数据,通过这几个接口可以快速实现特定的功能,非常快捷。...DataFrame数据中的日期时间列支持dt接口,该接口提供了dayofweek、dayofyear、is_leap_year、quarter、weekday_name等属性和方法,例如quarter可以直接得到每个日期分别是第几个季度...,weekday_name可以直接每个日期对应的周几的名字。...DataFrame数据中的字符串列支持str接口,该接口提供了center、contains、count、endswith、find、extract、lower、split等大量属性和方法,大部分用法与字符串的同名方法相同...本文使用的数据文件为C:\Python36\超市营业额2.xlsx,部分数据与格式如下: ? 下面代码演示了dt和str接口的部分用法: ?
今天是读《pyhton数据分析基础》的第15天,今天读书笔记的内容为使用pandas模块的数据框类型。 数据框(DataFrame)类型其实就是带标题的列表。...很多时候,整个数据框的数据并不会一次性的用于某一部的分析,而是选用某一列或几列的数据进行分析,此时就需要获取数据框的部分数据。...获取方式如下: 获取方式1:使用DataFrame.loc[] #调用某两行两列交汇的数据 #[index1,index2]表示引用索引号为index1和index2的两行数据 #[colName1,colName2...]表示引用列标题为colName1和colName2的列数据 DataFrame.loc[[index1,index2],[colName1,colName2]] 获取方式2:使用DataFrame.iloc...[] #调用某两行两列交汇的数据 #索引号从0开始算,若为连续的行数,则算头不算尾 #以下行代码所选取的数据相同 #1:3、[1,2]表示行索引号,选取第二行和第三行 #3:5、[3,4]表示列索引号,
本文将详细介绍如何使用Python构建一个科学计算工具,并通过具体代码示例展示其实现过程。...数据处理与分析 在科学计算中,数据处理和分析是基础。我们可以使用Pandas库读取和处理数据,并进行基本的统计分析。...数据可视化 数据可视化是科学计算中不可或缺的一部分。我们可以使用Matplotlib库将数据以图表的形式展示出来。...,我们展示了如何使用Python构建一个集成数据处理、数值计算和可视化功能的科学计算工具。...让我们共同推动科学计算技术的发展,为科研和工程应用提供更多支持。
Python扩展库pandas的DataFrame对象的pivot()方法可以对数据进行行列互换,或者进行透视转换,在有些场合下分析数据时非常方便。...DataFrame对象的pivot()方法可以接收三个参数,分别是index、columns和values,其中index用来指定转换后DataFrame对象的纵向索引,columns用来指定转换后DataFrame...对象的横向索引或者列名,values用来指定转换后DataFrame对象的值。...为防止数据行过长影响手机阅读,我把代码以及运行结果截图发上来: 创建测试用的DataFrame对象: ? 透视转换,指定index、columns和values: ?...透视转换,不指定values,但可以使用下标访问指定的values: ?
现在开始运行,使用Pandas把数据加载到数据帧里,并且使用“head”函数显示前几行。...提供的另外一个有用的函数是”describe”函数,它能在数据集上计算一些基本统计数据,这有助于在项目的探索性分析阶段获得数据的“feel”。...这个数据集只有一个因变量,我们可以把它放到散点图中以便更好地了解它。我们可以使用pandas为它提供的“plot”函数,这实际上只是matplotlib的一个包装器。...我们利用numpy的linear algrebra功能将结果计算为一系列矩阵运算。这比不优化的“for”循环的效率要高得多。...为了使这个成本函数与我们上面创建的pandas数据框架无缝对接,我们需要做一些操作。首先,在开始插入一列1s的数据帧使矩阵运算正常工作。然后把数据分离成自变量X和因变量y。
一、Pandas 和数据分析简介 在本章中,我们解决以下问题: 数据分析的动机 如何将 Python 和 Pandas 用于数据分析 Pandas 库的描述 使用 Pandas 的好处 数据分析的动机...使用 Pandas 的好处 Pandas 是 Python 数据分析语料库的核心组件。...简而言之,pandas 和 statstools 可以描述为 Python 对 R 的回答,即数据分析和统计编程语言,它既提供数据结构(如 R 数据帧架),又提供丰富的统计库用于数据分析。...现在让我们像往常一样将目标统计数据读入数据帧中。 在这种情况下,我们使用月份在数据帧上创建一个行索引: In [68]: goalStatsDF=pd.read_csv('..../2013 GoalsScored 87 110 100 101 将分组与多重索引一起使用 如果我们的数据帧具有多重索引,则可以使用groupby按层次结构的不同级别分组并计算一些有趣的统计数据
来源 | Medium 编辑 | 代码医生团队 StreamLit的出现兑现了仅使用Python创建Web应用程序的承诺。 Python之禅:简单胜于复杂,Streamlit使创建应用变得非常简单。...Streamlit Hello World Streamlit旨在使用简单的Python简化应用程序开发。编写一个简单的应用程序。...一个简单的多选小部件应用 逐步创建简单应用 对于理解重要的小部件来说,就这么多。现在将一次使用多个小部件创建一个简单的应用程序。 首先,将尝试使用streamlit可视化足球数据。...只使用了四个调用来简化。其余都是简单的python。...每当值更改时,就会一次又一次读取pandas数据框。虽然它适用于拥有的小数据,但不适用于大数据或当必须对数据进行大量处理时。使用st.cache装饰器功能在以下Streamlit处理中使用缓存。
问题描述:在当前文件夹中有一个存放同一门课程两个班级同学成绩的Excel文件“学生成绩.xlsx”,每个工作表中存放一个班级的成绩。...编写程序,使用pandas读取其中的数据,然后绘制柱状图和热力图对学生的成绩数据进行可视化。...技术要点:1)使用pandas读取Excel多WorkSheet中的数据;2)使用pandas函数merge()横向合并DataFrame;3)柱状图与热力图的绘制。 测试数据: ? 参考代码: ?
Python的Pandas库为我们提供了强大的数据选择工具。通过DataFrame的结构化数据存储方式,我们可以轻松地按照行或列进行数据的选择。...Python中的NumPy库提供了高效的多维数组对象及其上的运算功能,使得大规模的数值计算变得简单快捷。通过NumPy,我们可以进行向量化运算,避免了Python原生循环的低效性。...Python的Pandas库为数据合并操作提供了多种合并方法,如merge()、join()和concat()等方法。...【例】对于例48给定的DataFrame数据,统计数据的算数平均值并输出结果。...首先使用quantile()函 数计算35%的分位数,然后将学生成绩与分位数比较,筛选小于等于分位数的学生,程 序代码如下: 五、数值排序与排名 Pandas也为Dataframe实例提供了排序功能
而 Python 的 datatable 模块为解决这个问题提供了良好的支持,以可能的最大速度在单节点机器上进行大数据操作 (最多100GB)。...可以读取 RFC4180 兼容和不兼容的文件。 pandas 读取 下面,使用 Pandas 包来读取相同的一批数据,并查看程序所运行的时间。...统计总结 在 Pandas 中,总结并计算数据的统计信息是一个非常消耗内存的过程,但这个过程在 datatable 包中是很方便的。...datatable 和Pandas 来计算每列数据的均值,并比较二者运行时间的差异。...可以看到,使用 Pandas 计算时抛出内存错误的异常。 数据操作 和 dataframe 一样,datatable 也是柱状数据结构。
在使用 pandas 进行数据分析时,进行一定的数据探索性分析(EDA)是必不可少的一个步骤,例如常见统计指标计算、缺失值、重复值统计等。...只需使用pip install pandas_profiling即可安装,在导入数据之后使用df.profile_report()一行命令即可快速生成描述性分析报告 可以看到,除了之前我们需要的一些描述性统计数据...,该报告还包含以下信息: “ 类型推断:检测数据帧中列的数据类型。...要点:类型,唯一值,缺失值 分位数统计信息,例如最小值,Q1,中位数,Q3,最大值,范围,四分位数范围 描述性统计数据,例如均值,众数,标准偏差,总和,中位数绝对偏差,变异系数,峰度,偏度 最常使用的值...,为所有数据类型提供最大的信息。
作为一个几乎每天处理时间序列数据的人,我发现pandas Python包对于时间序列的操作和分析非常有用。 使用pandas操作时间序列数据的基本介绍开始前需要您已经开始进行时间序列分析。...因为我们的具体目标是向你展示下面这些: 1、创建一个日期范围 2、处理时间戳数据 3、将字符串数据转换为时间戳 4、数据帧中索引和切片时间序列数据 5、重新采样不同时间段的时间序列汇总/汇总统计数据 6...、计算滚动统计数据,如滚动平均 7、处理丢失的数据 8、了解unix/epoch时间的基本知识 9、了解时间序列数据分析的常见陷阱 让我们开始吧。...如果想要处理已有的实际数据,可以从使用pandas read_csv将文件读入数据帧开始,但是我们将从处理生成的数据开始。...04':'2018-01-06'] } 我们已经填充的基本数据帧为我们提供了每小时频率的数据,但是我们可以以不同的频率对数据重新采样,并指定我们希望如何计算新采样频率的汇总统计。
结论2:使用Stop会立即停止循环,使用Break会执行完毕所有符合条件的项。...四、返回集合运算结果/含有局部变量的并行循环 使用循环的时候经常也会用到迭代,那么在并行循环中叫做 含有局部变量的循环 。下面的代码中详细的解释,这里就不啰嗦了。...(long),既为下面的subtotal的初值 (i, LoopState, subtotal) => // 为每个迭代调用一次的委托,i是当前索引,LoopState是循环状态,subtotal为局部变量名...),既为下面的subtotal的初值 (i, LoopState, subtotal) => // 为每个迭代调用一次的委托,i是当前元素,LoopState是循环状态,subtotal为局部变量名...ForAll() 多线程枚举方法,与循环访问查询结果不同,它允许在不首先合并回到使用者线程的情况下并行处理结果。
领取专属 10元无门槛券
手把手带您无忧上云