导入 import pandas as pd 若使用的是Anaconda集成包则可直接使用,否则可能需要下载:pip install pandas 读取表格并得到表格行列信息 df=pd.read_excel...格式: 直接print(df)得到的结果: 对比结果和表格,很显然表格中的第一行(黄色高亮部分)被定义为数据块的列下标,而实际视作数据的是后四行(蓝色高亮部分);并且自动在表格第一列之前加了一个行索引...比如我上述例子中列索引为表格的第一行{1,2,3,4},而行索引为读取时自动添加的。 经过实验这种情况将会优先使用表格行列索引,也就对应了上面代码中得到的结果。...如果直接使用read_excel(filename),虽然列索引会默认为第一行,但是行索引并不会默认为第一列,而是会自动添加一个{0,1,2,3}作为行索引。...因此需要达到我们的目的需要设定一下读取时的参数,如下: df = pd.read_excel(filename,index_col=0) # 即指定第一列为行索引 print(df) print('第0
标签:Python 如果试图使用pandas读取使用密码加密的Excel文件,并收到以下消息: 这个消息表示试图在不提供密码的情况下读取使用密码加密的文件。...在本文中,将展示如何将加密的Excel文件读入pandas。 库 最好的解决方案是使用msoffcrypto库。...使用pip进行安装: pip install msoffcrypto-tool 将加密的Excel文件直接读取到Pandas msoffcrypto库有一个load_key()方法来为Excel文件准备密码...由于希望将加密的Excel文件直接读取到pandas中,因此保存到磁盘将效率低下。因此,可以将文件内容临时写入内存缓冲区(RAM)。为此,需要使用io库。...在示例中,密码是“123”,确保在测试此代码时将其替换为自己的密码。
Python pandas库提供了几种选择和过滤数据的方法,如loc、iloc、[]括号操作符、query、isin、between等等 本文将介绍使用pandas进行数据选择和过滤的基本技术和函数。...无论是需要提取特定的行或列,还是需要应用条件过滤,pandas都可以满足需求。 选择列 loc[]:根据标签选择行和列。...提供了很多的函数和技术来选择和过滤DataFrame中的数据。...比如我们常用的 loc和iloc,有很多人还不清楚这两个的区别,其实它们很简单,在Pandas中前面带i的都是使用索引数值来访问的,例如 loc和iloc,at和iat,它们访问的效率是类似的,只不过是方法不一样...如果有看到的话说明这个代码已经很好了,并且完全可以使用iloc替代。 最后,通过灵活本文介绍的这些方法,可以更高效地处理和分析数据集,从而更好地理解和挖掘数据的潜在信息。
背景 今天应产品运营的需要,需要导出一批订单数据,总数一共是七万多。按照以往的方式使用navicat将查询出来的表结果以excel的形式导出。...导出至本地打开excel后发现算上表头一共才65536行数据,凭借计算机程序员的专业嗅觉,发现这个真正的数据行65535这个数字不是碰巧出现的。带着疑问进行一番排查。...原因 Excel 97-2003 中,工作表的大小为 256 列 × 65,536 行,sheet表名最大32位 Excel 2010 和 Excel 2007 中,工作表的大小为 16,384 列 ×...1,048,576 行, 在 Excel 中,超出最大行列数单元格中的数据将会丢失。
前言 在 pandas 中,实现如下的模糊匹配统计,要怎么做? 简单: 因为在 pandas 中可以把筛选和统计两种逻辑分开编写,所以代码清晰好用。...问题在于pandas 中要实现模糊匹配,只能使用正则表达式或某种具体的函数。...在 excel 中有一类可以模糊匹配的统计函数,比如 sumifs 、 countifs 等,它们可以使用通配符实现模糊匹配统计。之前的 excel 公式: 问号 ?...+ 前面添加了反斜杠,正则表达式中反斜杠可以把特殊含义符号转义成普通内容 ---- 正确步骤 现在我们已经把整个问题拆分成2个小问题(并有解决方法): excel 的通配符在正则表达式中的对应表达 排除正常正则表达式中的特殊符号...应用到 pandas 的 series.str.match 函数即可: 不过,每次都这样子调用很啰嗦。可以封装到一个函数里面: 现在可以使用:
一、Pandas 基础数据处理1. 数据读取与写入Pandas 支持多种文件格式的数据读取和写入,如 CSV、Excel、JSON 等。最常用的函数是 read_csv 和 to_csv。...数据筛选与过滤Pandas 提供了灵活的筛选和过滤功能,可以根据条件选择特定的数据子集。...数据类型不一致在实际数据处理中,数据类型的不一致是一个常见的问题。例如,某些数值字段可能被误读为字符串类型。这会导致后续计算时出现错误。解决方案:使用 astype() 函数强制转换数据类型。...内存不足当处理大规模数据时,内存不足是一个常见的瓶颈。Pandas 默认会加载整个数据集到内存中,这对于大型数据集来说可能会导致性能问题。...KeyError 错误KeyError 是指访问不存在的列名或索引时发生的错误。通常是因为拼写错误或数据结构变化导致的。
Pandas用于两个表的连接技能merge,也就是根据一个表的条件去匹配另一个表的内容。...话不多说,直接上代码吧准备数据,导入模块import pandas as pddf1 = pd.DataFrame({ '姓名': ['张三', '李四', '王五', '刘六', '齐四'],...NaN8522022-01-04G100623齐七NaN8522022-02-04G101124冯亮NaN8522022-04-19G102625王云NaN8522022-03-06G1021df1表里需要匹配的姓名里...,在df2里面能匹配上姓名的都会列出来,而匹配不上的,都不会列出来,包括df1里面的内容【小结】可以对比下我们SQL里面的表连接的各种操作,很容易就理解了。
今天我们来讲一下用Pandas模块对数据集进行分析的时候,一些经常会用到的配置,通过这些配置的帮助,我们可以更加有效地来分析和挖掘出有价值的数据。...数据集的准备 这次我们需要用到的数据集是广为人所知的泰坦尼克号的乘客数据,我们先导入并且读取数据集 import pandas as pd df = pd.read_csv("train.csv")...展示更多的行 Pandas默认只展示60行的数据,如果数据集当中的数量超过了60行, pd.get_option('display.max_rows') ## 或者是 pd.options.display.max_rows...当我们想要展示数据集当中的前5列的时候 df.head() output 我们发现“Name”这一列当中的第二行因为字数比较多,就用了省略号来代替,这是因为Pandas对显示数据的量也是有限制的,...df.head() output 个性化展示数字 有时候我们遇到例如货币、百分比、小数等数字时,可以通过pandas当中的display.float_format方法来个性化展示数字, pd.set_option
标签:Python与Excel,pandas 我们之前讨论了如何在pandas中创建计算列,并讲解了一些简单的示例。...准备演示的数据框架 看一看下面的例子,有一个以百分比表示的学生在校平均成绩列表,我们希望将其转换为字母顺序的分数(即a、B、C、D、F等),分数阈值如下所示: A:>=90 B:80<=且<90 C:70...记住,我们永远不应该循环遍历pandas数据框架/系列,因为如果我们有一个大的数据集,这样做效率很低。...pandas applymap()方法 pandas提供了一种将自定义函数应用于列或整个数据框架的简单方法,就是.applymap()方法,这有点类似于map()函数的作用。...图3 我们仍然可以使用map()函数来转换分数等级,但是,需要在三列中的每一列上分别使用map(),而applymap()能够覆盖整个数据框架(多列)。
Pandas merge用法解析(用Excel的数据为例子) 【知识点】 语法: 参数如下: left: 拼接的左侧DataFrame对象 right: 拼接的右侧DataFrame对象 on: 要加入的列或索引级别名称...可以是列名,索引级名称,也可以是长度等于DataFrame长度的数组。 left_index: 如果为True,则使用左侧DataFrame中的索引(行标签)作为其连接键。...suffixes: 用于重叠列的字符串后缀元组。默认为(‘x’,’ y’)。 copy: 始终从传递的DataFrame对象复制数据(默认为True),即使不需要重建索引也是如此。...【实例】 # -*- coding: UTF-8 -*- import pandas as pd df1=pd.read_excel('data_1.xlsx') df2=pd.read_excel...】丢失了 vlookup_data=pd.merge(df1,df2,how='right') 这个就可以自己解理了 ======================= Pandas比excel的vlookup
需要提取采集的excel中的名单,通过遍历名单,提取出关键字以便下一步数据分析。...import pandas as pd df1 = pd.read_excel('名单2020.6.9.xlsx') df2 = pd.read_excel('2020.6.9 - 副本.xlsx')...print(tmp) columns = ['单位名称'] + list(df2.columns) df2['单位名称'] = tmp df2 = df2[columns] df2.to_excel...('result.xlsx') 其实excel查询函数也可以,但是没搞明白。。
假设有Excel文件data.xlsx,其中内容为 现在需要将这个Excel文件中的数据读入pandas,并且在后续的处理中不关心ID列,还需要把sex列的female替换为1,把sex列的male替换为...本文演示有关的几个操作。...(1)导入pandas模块 >>> import pandas as pd (2)把Excel文件中的数据读入pandas >>> df = pd.read_excel('data.xlsx') >>>...85 李四 40 180 0 80 王五 38 178 1 78 赵六 59 170 0 66 方法二:使用...85 李四 40 180 0 80 王五 38 178 1 78 赵六 59 170 0 66 方法三:使用
后来才发现,原来不是 Python 数据处理厉害,而是他有数据分析神器—— pandas 前言 Excel 中名声最响的就是 vlookup 函数,当然在 Excel 函数公式中用于查找的函数家族也挺大...今天就来看看 pandas 中任何实现 Excel 中的多列批量 vlookup 的效果 案例1:简单匹配 一天,你收到一份数据源表如下: - 每个人每个城市的销售额数据 接着,你需要把下图的表格从数据源表匹配过来...: > 不多讲解 Excel 的做法了,因为随着需求难度逐渐提升,公式会越来越"丑" 同样看看 pandas 的做法: 你可能会觉得是我贴错了代码,这不就是案例1的代码吗?...案例3:不存在的列 你可能会疑问:如果目标表本身就有一些数据源不存在的列,那么更新还能顺利吗: - 目标表多了一列数据,我们当然希望更新不会影响到这一列 继续看 pandas 的代码: - 是的,...> 多层索引及其应用,以及更多关于数据更新的高级应用,请关注我的 pandas 专栏 总结
1、Count 函数 作用:统计数字的个数 示例:使用公式生成A列的序号 =COUNT(A$1:A1)+1 注:大小不一的合并单元格填充公式,要使用Ctrl+Enter完成。 ?...7、Average函数 作用:计算1组数据的平均数 示例:统计各个部分的平均工资 =AVERAGE(C2:C4) 注:平均数公式也可以一键设置的 ?...10、Max函数 作用:提取一组数中的最大值。 示例1:=MAX(A1:A10) 示例2:统计财务部工资最多的金额是?...11、Min函数 作用:返回一组数的最小值 示例1:=MIN(A1:A110) 示例2:财务部工资最小的员工是?...15、Rank函数 作用:计算某个值在一组数据中的排名 示例:在C列计算当日收入的总排名 =RANK(B2,B:B) ?
后来才发现,原来不是 Python 数据处理厉害,而是他有数据分析神器—— pandas 前言 Excel 中名声最响的就是 vlookup 函数,当然在 Excel 函数公式中用于查找的函数家族也挺大...今天就来看看 pandas 中任何实现 Excel 中的多列批量 vlookup 的效果 案例1:简单匹配 一天,你收到一份数据源表如下: - 每个人每个城市的销售额数据 接着,你需要把下图的表格从数据源表匹配过来...: - 根据名字与上方的城市名字,从表1中匹配数据 对于 Excel 来说,这需求很简单,一个 vlookup 即可解决: - 由于刚好目标表的城市顺序与源表顺序一样,因此可以这么解决 那么我们来看看...: > 不多讲解 Excel 的做法了,因为随着需求难度逐渐提升,公式会越来越"丑" 同样看看 pandas 的做法: 你可能会觉得是我贴错了代码,这不就是案例1的代码吗?...案例3:不存在的列 你可能会疑问:如果目标表本身就有一些数据源不存在的列,那么更新还能顺利吗: - 目标表多了一列数据,我们当然希望更新不会影响到这一列 继续看 pandas 的代码: - 是的,
深入探索Pandas库:Excel数据处理的高级技巧 在数据分析领域,Pandas库因其强大的数据处理能力而广受欢迎。...在上一篇博客中,我们介绍了Pandas的基本操作,包括数据的读取、修改、添加、删除、排序和保存。今天,我们将深入探讨一些高级技巧,以帮助您更有效地处理Excel数据。...数据清洗 在处理数据时,我们经常需要清洗数据,包括填充缺失值和替换数据。 填充缺失值 处理缺失数据是数据分析中常见的任务。...我们可以使用fillna方法来填充缺失值: # 填充缺失值 df.fillna(value='Unknown', inplace=True) 替换数据 替换DataFrame中的值也是一个常见的需求:...('table_name', con=engine, if_exists='replace', index=False) 通过这些高级技巧,我们可以看到Pandas在处理Excel数据时的更多可能性。
探索Pandas库在Excel数据处理中的应用 在数据分析领域,Pandas库因其强大的数据处理能力而广受欢迎。今天,我们将通过一个简单的示例来探索如何使用Pandas来处理Excel文件。...这个示例将涵盖从读取Excel文件到修改、筛选和保存数据的全过程。 读取Excel文件 首先,我们需要导入Pandas库,并读取Excel文件。...假设我们有一个名为data.xlsx的文件,我们可以使用以下代码来读取它: import pandas as pd # 读取Excel文件 df = pd.read_excel('data.xlsx'...我们可以看到Pandas在处理Excel数据时的强大功能。...无论是数据的读取、修改、筛选还是保存,Pandas都提供了简洁而高效的方法。希望这个示例能帮助你更好地利用Pandas来处理你的数据。
各位大佬,我又有个excel 程序问题来求助了,请看下方这个excel 文档,里面写了两个备注,麻烦帮忙解决一下吧,谢谢 下图是他的Excel内容,可以看到具体的需求: 理解起来还是有点费劲的,需要读一两遍才可以理解...import pandas as pd res = df[df['Execute'].isin([4, 7])] print(res) 根据上面的提示,粉丝顺利地解决了自己的问题。...如果针对只有一个y的情况,直接等于也行。 顺利地解决了粉丝的问题。...这篇文章主要盘点了一个Python自动化办公Excel表数据处理的问题,文中针对该问题,给出了具体的解析和代码实现,帮助粉丝顺利解决了问题。...可以注意下面几点:如果涉及到大文件数据,可以数据脱敏后,发点demo数据来(小文件的意思),然后贴点代码(可以复制的那种),记得发报错截图(截全)。
标签:Python与Excel,pandas 对于Excel来说,删除行是一项常见任务。本文将学习一些从数据框架中删除行的技术。...准备数据框架 我们将使用前面系列中用过的“用户.xlsx”来演示删除行。 图1 注意上面代码中的index_col=0?如果我们将该参数留空,则索引将是基于0的索引。...通过指定index_col=0,我们要求pandas使用第一列(用户姓名)作为索引。...使用.drop()方法删除行 如果要从数据框架中删除第三行(Harry Porter),pandas提供了一个方便的方法.drop()来删除行。...我们可以使用布尔索引方便地筛选行,这里我们还可以使用它方便地删除行。这次我们将从数据框架中删除带有“Jean Grey”的行,并将结果赋值到新的数据框架。 图6
标签:Python与Excel,pandas 删除列也是Excel中的常用操作之一,可以通过功能区或者快捷菜单中的命令或者快捷键来实现。...上一篇文章,我们讲解了Python pandas删除数据框架中行的一些方法,删除列与之类似。然而,这里想介绍一些新方法。取决于实际情况,正确地使用一种方法可能比另一种更好。...准备数据框架 创建用于演示删除列的数据框架,仍然使用前面给出的“用户.xlsx”中的数据。 图1 .drop()方法 与删除行类似,我们也可以使用.drop()删除列。...注意,当使用del时,对象被删除,因此这意味着原始数据框架也会更新以反映删除情况。 图3 重赋值方法 也就是方括号法,但这不是真正的删除方法,而是重新赋值操作。但是,最终结果与删除相同。...使用哪种方法? 三种方法,应该用哪一种?答案总是:视情况而定。下面是我用来决定使用哪种方法的一些技巧。 .drop() 当有许多列,而只需要删除一些列时,效果最佳。
领取专属 10元无门槛券
手把手带您无忧上云