PyMC3使得概率编程变得简单,以下是一个简单的示例:pythonCopy codeimport pymc3 as pmimport numpy as np# 创建一个简单的线性回归模型np.random.seed...,我们使用PyMC3创建了一个线性回归模型,其中slope和intercept是模型的参数,而y是观测到的数据。...trace包含了参数的后验分布,我们可以使用它来进行推断和可视化。第二步:了解PyMC3的基本概念2.1 模型定义在PyMC3中,模型的定义包括参数的先验分布和似然函数。...可以使用Model对象来定义模型:pythonCopy codewith pm.Model() as model: # 定义先验分布 slope = pm.Normal('slope', mu...例子4.1 二项分布模型考虑一个二项分布模型,模拟一组硬币投掷的数据,并使用PyMC3进行参数估计:pythonCopy codeimport pymc3 as pmimport numpy as np
这种方法本质上是贝叶斯方法,所以我们可以指定先验来告知和约束我们的模型,并得到后验分布形式的不确定性估计。使用MCMC采样算法,我们可以从后验中抽样灵活地估计这些模型。...这些算法拟合后验的分布(比如正态分布),将采样问题转换为优化问题,而不是从后验中采样。...使用drop-out这样的技术可以避免过拟合。 架构:大量的创新都是改变输入层,比如卷积神经网络,或改变输出层,比如MDN。...有趣的是,网络的不同层可以从分层不同的级别中获得信息——例如,提取视觉线条的初层在所有子网络中都是同一的,而高阶表示则不同。分层模型可以从数据中学习到所有东西。...PyMC3中的贝叶斯神经网络 生成数据 首先,我们生成一些小型数据——一个简单的二元分类问题,非线性可分。
如果你想了解更多关于共轭先验的知识,我们在后面其他文章进行讲解。 在这篇文章中,我们将介绍如何使用PyMC3包实现贝叶斯线性回归,并快速介绍它与普通线性回归的区别。...频率主义者使用极大似然估计(MLE)的方法来推导线性回归模型的值。MLE的结果是每个参数的一个固定值。...在贝叶斯世界中,参数是具有一定概率的值分布,使用更多的数据更新这个分布,这样我们就可以更加确定参数可以取的值。...PyMC3,我们必须初始化一个模型,选择先验并告诉模型后验分布应该是什么,我们使用100个样本来进行建模,: # Start our model with pm.Model() as model_100...总结 在本文中,我们介绍贝叶斯统计的主要原理,并解释了它与频率统计相比如何采用不同的方法进行线性回归。然后,我们学习了如何使用PyMC3包执行贝叶斯回归的基本示例。
应用贝叶定理从观察到的样本数据中推导出后验参数值。 重复步骤 1-4,以获取更多数据样本。 使用 PyMC3,我们现在可以简化和压缩这些步骤。 首先,我们设定先验信念和先验β-二项分布。...summary 我们使用迹线手动绘制和比较先验分布和后验分布。确认这些与手动获得的相似,后验分布均值为 P(Tails|观测数据)= 0.35。...PyMC3 和其他类似软件包提供了一组简单的函数来组装和运行概率模拟,例如贝叶斯推理。 个案研究: 使用贝叶斯推理评估保险索赔发生率 保险索赔通常被建模为由于泊松分布式过程而发生。...β泊松,或任何类似于观察到的λ数据形状的分布,但是伽马泊松最适合: 泊松可以取任何正数到无穷大(0,∞),而β或均匀是[0-100]。...结论: 在这篇文章中,PyMC3 被应用于对两个示例进行贝叶斯推理:使用 β-二项分布的抛硬币偏差,以及使用 gamma-泊松分布的保险索赔发生。
贝叶斯方法给了我们一个机会,使得我们可以不手动添加正则项的情况下对神经网络进行正则化,理解模型的不确定性,并尽可能使用更少的数据得到更好的结果。 Hi!又见面啦。...从概率角度讲,我们可以从数据本身学习正则化方法,在我们预测中估计准确性,使用更少的数据来训练并且在模型中加入概率依赖。...初始分布称之为先验分布,使用过训练数据拟合参数的分布叫做后验分布。后者用于取样和获得输出数据。 模型的拟合效果怎么样呢?一般的框架叫做变分推理。...你可以将它认为是一种附加的隐藏变量,从数据中学习模型,而不是采用在模型中注入dropout或L1正则化的方法。...我对于使用贝叶斯模型没有太多经验,但就我从Pyro和PyMC3学习中可以知道,训练过程耗时很长而且很难定义准确的先验分布。此外,处理分布的多个样本会导致误解和歧义。
所以,这是我简化它的方法:与其在开始时使用过多的理论或术语,不如让我们关注贝叶斯分析的机制,特别是如何使用PyMC3和ArviZ进行贝叶斯分析和可视化。...在我们开始之前,让我们先得出一些基本的直觉: 贝叶斯模型也被称为概率模型,因为它们是用概率建立的。贝叶斯利用概率作为量化不确定性的工具。因此,我们得到的答案是分布而不是点估计。...我们将在PyMC3中这样实例化模型: PyMC3中的模型规范封装在with语句中。 先验选择: μ,指人口。正态分布很广。我不知道μ的可能的值,我可以设置先验。...从轨迹图中,我们可以从后面直观地得到可信的值。 上面的图中每个参数都有一行。对于这个模型,后面是二维的,因此上图显示了每个参数的边缘分布。...这意味着模型中可能没有共线性。这是很好的。 我们还可以对每个参数的后验分布进行详细的总结。 az.summary(trace_g) ?
SSVS的基本思想是将通常使用的先验方差分配给应包含在模型中的参数,将不相关参数的先验方差接近零。这样,通常就可以估算出相关参数,并且无关变量的后验值接近于零,因此它们对预测和冲激响应没有显着影响。...可以直接将SSVS添加到VAR模型的标准Gibbs采样器算法中。在此示例中,常数项从SSVS中排除,这可以通过指定来实现include = 1:36。...但是,如果研究人员不希望使用模型,变量的相关性可能会从采样算法的一个步骤更改为另一个步骤,那么另一种方法将是仅使用高概率的模型。...这可以通过进一步的模拟来完成,在该模拟中,对于不相关的变量使用非常严格的先验,而对于相关参数则使用没有信息的先验。...Gibbs抽样的贝叶斯简单线性回归仿真 4.R语言中的block Gibbs吉布斯采样贝叶斯多元线性回 5.R语言中的Stan概率编程MCMC采样的贝叶斯模型 6.Python用PyMC3实现贝叶斯线性回归模型
先验分布:如果具备领域知识或者对于模型参数的猜测,我们可以在模型中将它们包含进来,而不是像在线性回归的频率方法那样:假设所有关于参数的所需信息都来自于数据。...如果事先没有没有任何的预估,我们可以为参数使用无信息先验,比如一个正态分布。 后验分布:使用贝叶斯线性回归的结果是一个基于训练数据和先验概率的模型参数的分布。...贝叶斯线性模型的应用 我将跳过本文的代码部分(请参阅 PyMC3 中的代码实现),但是实现贝叶斯回归的基本流程是:指定模型参数的先验(在这个例子中我使用正态分布),创建将训练数据中的输入映射到输出的模型...第一个模型的结果显示在左边,它使用了 500 个数据点;而右图所示的模型使用了 15,000 个数据点。每张图都显示了从模型参数的后验概率中抽样得到的 100 个可能的模型。 ?...有了所有的数据点,OLS 和贝叶斯模型的拟合结果几乎是一样的,因为先验的影响被数据中的似然降低了。 当使用我们的贝叶斯线性模型预测单个数据点的输出时,我们仍然不是得到单一的值,而是一个分布。
如你所知,贝叶斯推理包括将先验分布与从数据中获得的似然性相结合。指定先验分布是贝叶斯推断中最关键的一点,应该受到高度重视(例如Van de Schoot等人,2017)。...我们指定target = "jags "来使用Jags而不是Stan编译器。...向下滑动查看结果▼**回归--用户指定的先验你也可以手动指定你的先验分布。理论上,你可以使用你喜欢的任何一种分布来指定你的先验知识。...对于你的正态线性回归模型,如果你的回归参数的预设是用正态分布来指定的,就可以达到共轭性(残差得到一个反伽马分布,这里忽略不计)。你可以很灵活地指定信息性先验。...让我们用共轭先验来重新指定上面练习的回归模型。我们暂时不涉及截距和残差的预设。关于你的回归参数,你需要指定其正态分布的超参数,即均值和方差。平均值表示你认为哪一个参数值最有可能。
注意:通过相同的计算,我们还可以看到,如果θ的先验分布是参数为α,β的Beta分布,即p(θ)= B(α,β),并且样本大小为N,k它们是人头向上的次数,则θ的后验分布由B(α+ k,β+ N-K)给出...在我们的案例下,α=β= 1,N = 3,k = 2。 量化方法 在显式方法中,我们能够使用共轭先验来显式计算θ的后验分布。但有时使用共轭先验来简化计算,它们可能无法反映现实。...此外找到共轭先验并不总是可行的。 我们可以通过使用马尔可夫链蒙特卡洛(MCMC)方法来近似后验分布来克服此问题。这里的数学计算很多,但是出于本文目的,我们不会深入探讨。...然后,我们可以绘制从后验分布获得的样本的直方图,并将其与真实密度函数进行比较。...我们将随机抛硬币1000次,使用PyMC3估算θ的后验分布。然后绘制从该分布获得样本的直方图。
p=5263 在本文中,我们将在贝叶斯框架中引入回归建模,并使用PyMC3 MCMC库进行推理。 ? 我们将首先回顾经典或频率论者的多重线性回归方法。然后我们将讨论贝叶斯如何考虑线性回归。...在我们开始讨论贝叶斯线性回归之前,我想简要地概述广义线性模型(GLM)的概念,因为我们将使用它们来在PyMC3中制定我们的模型。...GLM允许具有除正态分布以外的误差分布的响应变量(参见频率分区中的上述)。 用PyMC3模拟数据并拟合模型 在我们使用PyMC3来指定和采样贝叶斯模型之前,我们需要模拟一些噪声线性数据。...通过Numpy,pandas和seaborn模拟噪声线性数据 现在我们已经进行了模拟,我们想要对数据拟合贝叶斯线性回归。这是glm模块进来的地方。它使用与R指定模型类似的模型规范语法。...使用PyMC3将贝叶斯GLM线性回归模型拟合到模拟数据 我们可以使用glm库调用的方法绘制这些线plot_posterior_predictive。
贝叶斯推断贝叶斯推断是贝叶斯统计的核心方法之一,它使用贝叶斯公式来计算后验概率,并通过更新先验概率来获得更准确的估计值。在Python中,可以使用PyMC3库进行贝叶斯推断分析。...1.1 先验分布先验分布是贝叶斯推断的关键部分,它代表了对未知参数的初始信念。在PyMC3中,我们可以使用各种概率分布(如正态分布、均匀分布等)来建立先验分布。...2.1 PyMC3概率模型PyMC3提供了一种直观而灵活的方式来定义概率模型,通过使用Python语法和约定来描述随机变量及其关系。...在贝叶斯推断中,我们将参数视为随机变量,并使用贝叶斯公式根据先验概率和似然函数来计算后验概率。贝叶斯推断的一个重要步骤是后验采样,通过生成符合后验分布的样本来近似表示后验概率分布。...PyMC3和Edward是两个常用的概率编程库,它们提供了高级API来定义概率模型,并支持多种推断算法。马尔科夫链蒙特卡洛(MCMC)是一种基于马尔科夫链的采样方法,用于从复杂的分布中生成样本。
(实质上是用梯度下降进行带权值的矩阵乘法),并揭秘贝叶斯深度学习(将先验信息加在权值上)。...然后,作者通过PyMC3和Theano代码来说明如何构建贝叶斯深度网络,并将结果中的不确定性进行可视化,这个PPT和视频内容是学习贝叶斯深度学习非常好的资料,建议大家收藏。...▌内容目录 简要介绍深度学习: 是一种使用矩阵运算的模型; 并行:线性回归/非线性回归/前馈神经网络结构(Feed Forward NN Architecture) 我们估计哪些参数 权值 过滤器值(卷积...不确定性措施: 最重要的原因是:我们能否判断我们的模型对预测是否有信心?...贝叶斯深度学习的本质: 估计参数的概率分布,而不是原来的点估计 最常见的先验:权值矩阵上的单位高斯 代码示例: 用前馈神经网络进行二分类 前馈神经网络的非线性回归 参考文献: “twiecki”的博客
(实质上是用梯度下降进行带权值的矩阵乘法),并揭秘贝叶斯深度学习(将先验信息加在权值上)。...然后,作者通过PyMC3和Theano代码来说明如何构建贝叶斯深度网络,并将结果中的不确定性进行可视化,这个PPT和视频内容是学习贝叶斯深度学习非常好的资料,建议大家收藏。...▌内容目录 ---- 简要介绍深度学习: 是一种使用矩阵运算的模型; 并行:线性回归/非线性回归/前馈神经网络结构(Feed Forward NN Architecture) 我们估计哪些参数 权值 过滤器值...不确定性措施: 最重要的原因是:我们能否判断我们的模型对预测是否有信心?...贝叶斯深度学习的本质: 估计参数的概率分布,而不是原来的点估计 最常见的先验:权值矩阵上的单位高斯 代码示例: 用前馈神经网络进行二分类 前馈神经网络的非线性回归 参考文献: “twiecki”的博客
使用概率的观点看待这个问题能够让我们从数据本身学习正则化、估计预测结果的确定性、使用更少的数据进行训练,还能在模型中引入额外的概率依赖关系。...无需细想,我们可以假设,我们希望找到一个可以得到最大对数似然函数 p_w(z | x)的模型,其中 w 是模型的参数(分布参数),z 是我们的隐变量(隐藏层的神经元输出,从参数 w 的分布采样得到),x...不同于在模型中使用 dropout 或 L1 正则化,你可以把它当作你数据中的隐变量。考虑到所有的权重其实是分布,你可以从中抽样 N 次得到输出的分布,通过计算该分布的标准差,你就知道能模型有多靠谱。...概率编程的不足 我还没有太多关于贝叶斯建模的经验,但是我从 Pyro 和 PyMC3 中了解到,这类模型的训练过程十分漫长且很难定义正确的先验分布。而且,处理从分布中抽取的样本会导致误解和歧义。...贝叶斯线性回归 首先,我想验证简单线性分类器在任务中的表现结果(并且我想直接使用 Pyro tutorial——http://pyro.ai/examples/bayesian_regression.html
从概率角度进行处理,通过数据本身进行正则化,估计预测的确定性,使用较少的数据,将概率依赖引入到模型中。这里主要讲概况,我会更注重于应用问题,而不会特别深入的讲解贝叶斯模型或变分推断技术或数学细节问题。...有趣的是这样的神经网络分布,可以看做从 y ~ p(y|x) 采样,然后把输出作为其分布(其中输出通常是该分布的样本期望,其标准差 — —作为不确定性的估计 — —分布的尾部越大——输出的置信度越低)。...使用概率编程的原因 从数据中学习它作为额外的潜变量,而不是传统的在模型中使用dropouts或L1正则化。...不使用概率编程的原因 我在贝叶斯模型使用尚没有积累大量的经验,不过在使用Pyro和PyMC3的过程中我发现,训练过程很长且难以确定先验概率。...结论 我们使用新的方法训练神经网络,通过更新权重的分布(而不是依次更新静态权重),得到了有趣的并有前景的结果。
p=7637 最近我们被客户要求撰写关于贝叶斯统计的研究报告,包括一些图形和统计输出。...本文讲解了使用PyMC3进行基本的贝叶斯统计分析过程. ( 点击文末“阅读原文”获取完整代码数据******** )。...参数估计问题parameterized problem 先验假设 对参数预先的假设分布: p∼Uniform(0,1) likelihood function(似然函数, 翻译这词还不如英文原文呢...先验知识 由药学知识已知测量函数(measurement function): m=β1+ex−IC50 测量函数中的参数估计, 来自先验知识: β∼HalfNormal(1002) 关于感兴趣参数的先验知识...安慰剂组 测量参与者的IQ分数 先验知识 被测数据符合t分布: data∼StudentsT(μ,σ,ν) 以下为t分布的几个参数: 均值符合正态分布: μ∼N(0,1002) 自由度(degrees
p=4612最近我们被客户要求撰写关于Gibbs抽样的研究报告,包括一些图形和统计输出。 贝叶斯分析的许多介绍都使用了相对简单的教学实例(例如,根据伯努利数据给出成功概率的推理)。...其他条款包括参数的联合先验分布(因为我们隐含地假设独立前,联合先验因素)。伴随的R代码的第0部分为该指定的“真实”参数从该模型生成数据。...它有助于从完全非标准化的后验开始:为了找到参数的条件后验,我们简单地删除不包含该参数的关节后验的所有项。例如,常数项条件后验:同样的,条件后验可以被认为是另一个逆伽马分布,有一些代数操作。...我们不需要使用网格方法来从条件的后面绘制。因为它来自已知的分布请注意,这种网格方法有一些缺点。首先,这在计算上是复杂的。通过代数,希望得到一个已知的后验分布,从而在计算上更有效率。...其次,网格方法需要指定网格点的区域。如果条件后验在我们指定的[-10,10]的网格间隔之外具有显着的密度?在这种情况下,我们不会从条件后验得到准确的样本。
StanStan是一种用于指定统计模型的编程语言。它最常被用作贝叶斯分析的MCMC采样器。马尔科夫链蒙特卡洛(MCMC)是一种抽样方法,允许你在不知道分布的所有数学属性的情况下估计一个概率分布。...它在贝叶斯推断中特别有用,因为后验分布往往不能写成表达式。要使用Stan,用户要写一个Stan程序,代表他们的统计模型。这个程序指定了模型中的参数和目标后验密度。...一个包含公式中变量的数据框。此外,还有一个可选的先验参数,它允许你改变默认的先验分布。stan()函数读取和编译你的stan代码,并在你的数据集上拟合模型。stan()函数有两个必要参数。文件。...包含你的Stan程序的.stan文件的路径。data。一个命名的列表,提供模型的数据。例子作为一个简单的例子来演示如何在这些包中指定一个模型,我们将使用汽车数据来拟合一个线性回归模型。...模型区块是定义变量概率声明的地方。在这里,我们指定目标变量具有正态分布,其平均值为α+X*β,标准差为sigma。在这个块中,你还可以指定参数的先验分布。默认情况下,参数被赋予平坦的(非信息性)先验。
领取专属 10元无门槛券
手把手带您无忧上云