首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    使用 Python 按行和按列对矩阵进行排序

    在本文中,我们将学习一个 python 程序来按行和按列对矩阵进行排序。 假设我们采用了一个输入的 MxM 矩阵。我们现在将使用嵌套的 for 循环对给定的输入矩阵进行逐行和按列排序。...创建一个函数 sortMatrixRowandColumn() 通过接受输入矩阵 m(行数)作为参数来对矩阵行和列进行排序。...调用上面定义的sortMatrixRowandColumn()函数,方法是将输入矩阵,m值传递给它,对矩阵行和列进行排序。...Python 对给定的矩阵进行行和列排序。...此外,我们还学习了如何转置给定的矩阵,以及如何使用嵌套的 for 循环(而不是使用内置的 sort() 方法)按行对矩阵进行排序。

    6.1K50

    Python-科学计算-pandas-13-列名删除列替换nan

    Python的科学计算及可视化 今天讲讲pandas模块 修改Df列名,删除某列,以及将nan值替换为字符串yes Part 1:目标 ?...目标: 修改列名:{'time': 'date', 'pos': 'group', 'value1': 'val1', 'value3': 'val3'} 删除列value2 替换nan值为yes Df...该方法生成了一个新的df,不是直接在原df上进行操作 df_2.drop(['value2'], axis=1, inplace=True),删除列名为value2的列,axis=1表示按列进行删除,inplace...=True表示对原df进行操作,保留操作后的结果,与第1点的情况不同 df_2.fillna("yes", inplace=True) 将nan值用字符串yes进行替换 定义nan值使用np.nan方法...实际情况中,当df某行某列没有赋值,会出现nan值情况,对于nan值有些情况需要处理,例如使用Django进行网站搭建,后端向前端反馈数据时,不能包括nan值

    2K10

    Python数据处理从零开始----第二章(pandas)(十一)通过列属性对列进行筛选

    本文主要目的是通过列属性进行列挑选,比如在同一个数据框中,有的列是整数类的,有的列是字符串列的,有的列是数字类的,有的列是布尔类型的。...假如我们需要挑选或者删除属性为整数类的列,就可能需要用到pandas.DataFrame.select_dtypes函数功能 该函数的主要格式是:DataFrame.select_dtypes(include...= None,exclude = None),返回DataFrame列的子集。...返回: subset:DataFrame,包含或者排除dtypes的的子集 笔记 要选取所有数字类的列,请使用np.number或'number' 要选取字符串的列,必须使用‘object’ 要选择日期时间...,请使用np.datetime64,'datetime'或'datetime64' 要选取所有属性为‘类’的列,请使用“category” 实例 新建数据集 import pandas as pd import

    1.6K20

    python 使用jinja2对html模板文件进行数据替换

    背景:执行完自动化测试后,希望将获取到的测试结果数据替换html模板文件,以生成测试报告。 image.png 解决方案:使用python语言的jinja2组件,可以对模板文件进行各种数据处理。...2-将需要动态替换的数据,以json的形式存储在变量中 3-使用jinja2组件相关功能,读取模板文件并设置变量对应的value ---- 相关代码: 1-html模板文件 if控制语句: image.png...jinja2组件进行模板替换 env = Environment(loader=FileSystemLoader('d://')) tpl = env.get_template('template.html...falseCount=summaryjsondata['falseCount'],datalist=casejsondata) fout.write(render_content) ---- 完整的python...脚本会读取template.html文件,并将测试结果数据替换模板文件生成新的文件report.html。

    5.3K1512

    Python-科学计算-pandas-17-对某些列或行运算

    Python的科学计算及可视化 今天讲讲pandas模块 对Df的特定列或者行进行与自身或者常数的运算 Part 1:场景描述 ?...已知一个df_1,列索引为: ["value1", "value2", "value3", "value4"],行索引为0-7 现有分别有以下需求: 列操作:对“value1”, “value2”列的每个数平方...value1", "value2", "value3", "value4"]) print("\n", "df_1", "\n", df_1, "\n") print(type(df_1)) # 对某些列进行计算...对列操作还是对行操作,根据axis=1这个参数,默认取0 0,对列进行操作 1,对行进行操作 df_2 = df_1.apply(lambda x: np.square(x) if x.name in...['value1', 'value2'] else x)运用了apply方法,使用lambda函数,简单来理解就是对列名为['value1', 'value2']的每个元素进行平方,其余保持不变。

    2.2K10

    Python 使用pandas 进行查询和统计详解

    前言 在使用 Pandas 进行数据分析时,我们需要经常进行查询和统计分析。...: df.sort_values(by='age') 按照某列数据进行降序排列: df.sort_values(by='age', ascending=False) 数据聚合 对整个 DataFrame...进行聚合操作: # 聚合函数:求和、均值、中位数、最大值、最小值 df.aggregate([sum, 'mean', 'median', max, min]) 对某列数据进行聚合操作: # 统计年龄平均值...对 DataFrame 去重: # 根据所有列值的重复性进行去重 df.drop_duplicates() # 根据指定列值的重复性进行去重 df.drop_duplicates(subset=['name...', 'age']) 对 Series 去重: # 对 'name' 列进行去重 df['name'].drop_duplicates() 数据合并 横向(按列)合并 DataFrame: # 创建一个新的

    32910

    Python-科学计算-pandas-14-df按行按列进行转换

    系统:Windows 7 语言版本:Anaconda3-4.3.0.1-Windows-x86_64 编辑器:pycharm-community-2016.3.2 pandas:0.19.2 这个系列讲讲...Python的科学计算及可视化 今天讲讲pandas模块 将Df按行按列进行转换 Part 1:目标 最近在网站开发过程中,需要将后端的Df数据,渲染到前端的Datatables,前端识别的数据格式有以下特征...Part 2:代码 import pandas as pd dict_1 = {"time": ["2019-11-02", "2019-11-03", "2019-11-04", "2019-11-...Part 3:部分代码解读 list_fields = df_1.to_dict(orient='records'),使用了to_dict函数,其中orient=’records’,简单记忆法则,records...表示记录,对应数据库的行 Part 4:延伸 以上方法将Df按行转换,那么是否可以按列进行转换呢?

    1.9K30

    使用python对mysql主从进行监控

    1.编写python的监控脚本   A.通过获取mysql库中的状态值来判断这个mysql主从状态是否正常 ?        B.进行两个状态值的判断 ?        ...2.设置定时任务进行脚本运行   crontab -e    添加定时任务   */5 * * * * source ~/.bashrc && /usr/bin/python /lvdata/send_msg.py...    给脚本执行权限  chmod +x /lvdata/send_msg.py       这里出现一个问题,就是手工能执行脚本,但定时任务时不能执行python脚本,参考解决方法:   1.将脚本中的中文进行删除或更改为英文.../lvdata/send_msg.py)   然后将定时任务进行修改 */5 * * * * source ~/.bashrc && /usr/bin/python /lvdata/send_msg.py...mysql -uroot -p密码 -S /tmp/mysql.sock \"-e show slave '自定义名称' status\G\"|grep \"Master_Host\"")   #对SQL_Running

    1.5K20

    使用Pandas完成data列数据处理,按照数据列中元素出现的先后顺序进行分组排列

    一、前言 前几天在Python钻石交流群【瑜亮老师】给大家出了一道Pandas数据处理题目,使用Pandas完成下面的数据操作:把data列中的元素,按照它们出现的先后顺序进行分组排列,结果如new列中展示...import pandas as pd df = pd.DataFrame({ 'data': ['A1', 'D3', 'B2', 'C4', 'A1', 'A2', 'B2', 'B3',...new列为data列分组排序后的结果 print(df) 结果如下图所示: 二、实现过程 方法一 这里【猫药师Kelly】给出了一个解答,代码和结果如下图所示。...for k, v in Counter(df['data']).items()], []) 运行之后,结果如下图所示: 方法三 【瑜亮老师】从其他群分享了一份代码,代码如下图所示: import pandas...这篇文章主要盘点了使用Pandas完成data列数据处理,按照数据列中元素出现的先后顺序进行分组排列的问题,文中针对该问题给出了具体的解析和代码演示,一共6个方法,欢迎一起学习交流,我相信还有其他方法,

    2.3K10

    使用Python对Instagram进行数据分析

    我推荐使用Jupyter笔记本和IPython。普通的python运行良好,但可能没有显示图像的功能。...安装 你可以使用pip来安装库: python-m pip install-e git+https://github.com/LevPasha/Instagram-API-python.git#egg=...为了做到这一点,首先我们需要在你的用户配置文件中获得所有的帖子,然后根据点赞的数量对它们进行排序。...由于我们要按照字典内的某个键对它进行排序,我们可以这样使用lambda表达式: myposts_sorted= sorted(myposts, key=lambda k: k['like_count']...获得跟踪用户和跟踪列表 我将获得跟踪用户和跟踪列表,并对其进行一些操作。为了使用getUserFollowings和getUserFollowers这两个函数,你需要先获取user_id。

    2.8K40
    领券