首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    Python 读取excel指定的列

    一、摘要 在这篇文章中: https://www.cnblogs.com/xiao987334176/p/9330368.html#autoid-4-5-2 介绍了使用 xlrd 模块,读取指定坐标的单元格...还没有介绍如何读取指定的列。 二、举例 目前有一张水果报价表,内容如下: ? 需要提取品名和成本价,完整代码如下: #!.../usr/bin/env python3 # coding: utf-8 import xlrd # 打开excel文件,创建一个workbook对象,book对象也就是fruits.xlsx文件,表含有...for row in rsheet.get_rows():     product_column = row[1]  # 品名所在的列     product_value = product_column.value...= '品名':  # 排除第一行         price_column = row[4]  # 价格所在的列         price_value = price_column.value

    2.4K10

    python读取txt中的一列称为_python读取txt文件并取其某一列数据的示例

    python读取txt文件并取其某一列数据的示例 菜鸟笔记 首先读取的txt文件如下: AAAAF110 0003E818 0003E1FC 0003E770 0003FFFC 90 AAAAF110...读取txt文件并取其某一列数据的示例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。.../usr/bin/python #coding=utf-8 def readfile(filename): with o 这篇文章主要介绍了使用Python脚本从文件读取数据代码实例,文中通过示例代码介绍的非常详细...,需要把在线的 其中一个 collection 里面的数据迁移到另外一个collection下,于是就百度了看到好多文章,其中大部分都是使用导入的方法,没有找到在线数据的迁移方法.于是写了python脚本...先分段 按1000条数据量进行查询,处理成json数据 把处理后的json数据 发送到目的collection上即可 实现: 一.使用http的接口先进行查询 python读取.txt(.log)文件

    5.2K20

    Spark如何读取Hbase特定查询的数据

    最近工作需要使用到Spark操作Hbase,上篇文章已经写了如何使用Spark读写Hbase全量表的数据做处理,但这次有所不同,这次的需求是Scan特定的Hbase的数据然后转换成RDD做后续处理,简单的使用...Google查询了一下,发现实现方式还是比较简单的,用的还是Hbase的TableInputFormat相关的API。...基础软件版本如下: 直接上代码如下: 上面的少量代码,已经完整实现了使用spark查询hbase特定的数据,然后统计出数量最后输出,当然上面只是一个简单的例子,重要的是能把hbase数据转换成RDD,只要转成...new对象,全部使用TableInputFormat下面的相关的常量,并赋值,最后执行的时候TableInputFormat会自动帮我们组装scan对象这一点通过看TableInputFormat的源码就能明白...: 上面代码中的常量,都可以conf.set的时候进行赋值,最后任务运行的时候会自动转换成scan,有兴趣的朋友可以自己尝试。

    2.8K50

    使用内存映射加快PyTorch数据集的读取

    本文将介绍如何使用内存映射文件加快PyTorch数据集的加载速度 在使用Pytorch训练神经网络时,最常见的与速度相关的瓶颈是数据加载的模块。...Dataset是我们进行数据集处理的实际部分,在这里我们编写训练时读取数据的过程,包括将样本加载到内存和进行必要的转换。...对于更多的介绍请参考Numpy的文档,这里就不做详细的解释了 基准测试 为了实际展示性能提升,我将内存映射数据集实现与以经典方式读取文件的普通数据集实现进行了比较。...这里使用的数据集由 350 张 jpg 图像组成。...从下面的结果中,我们可以看到我们的数据集比普通数据集快 30 倍以上: 总结 本文中介绍的方法在加速Pytorch的数据读取是非常有效的,尤其是使用大文件时,但是这个方法需要很大的内存,在做离线训练时是没有问题的

    1.2K20

    使用内存映射加快PyTorch数据集的读取

    但是如果数据本地存储,我们可以通过将整个数据集组合成一个文件,然后映射到内存中来优化读取操作,这样我们每次文件读取数据时就不需要访问磁盘,而是从内存中直接读取可以加快运行速度。...Dataset是我们进行数据集处理的实际部分,在这里我们编写训练时读取数据的过程,包括将样本加载到内存和进行必要的转换。...对于更多的介绍请参考Numpy的文档,这里就不做详细的解释了。 基准测试 为了实际展示性能提升,我将内存映射数据集实现与以经典方式读取文件的普通数据集实现进行了比较。...这里使用的数据集由 350 张 jpg 图像组成。...从下面的结果中,我们可以看到我们的数据集比普通数据集快 30 倍以上: 总结 本文中介绍的方法在加速Pytorch的数据读取是非常有效的,尤其是使用大文件时,但是这个方法需要很大的内存,在做离线训练时是没有问题的

    95120

    Pytorch加载自己的数据集(使用DataLoader读取Dataset)

    大家好,又见面了,我是你们的朋友全栈君。 1. 我们经常可以看到Pytorch加载数据集会用到官方整理好的数据集。...很多时候我们需要加载自己的数据集,这时候我们需要使用Dataset和DataLoader Dataset:是被封装进DataLoader里,实现该方法封装自己的数据和标签。...(10, 20) # 随机生成标签,大小为10 * 1列 source_label = np.random.randint(0,2,(10, 1)) # 通过GetLoader将数据进行加载,返回Dataset...): from torch.utils.data import DataLoader # 读取数据 datas = DataLoader(torch_data, batch_size=6, shuffle...=True, drop_last=False, num_workers=2) 此时,我们的数据已经加载完毕了,只需要在训练过程中使用即可。

    2.3K40

    读取文档数据的各列的每行中

    读取文档数据的各列的每行中 1、该文件的内容被读 [root@dell leekwen]# cat userpwd 1412230101 ty001 1412230102 ty002..., 它的第一列值是1512430102, 它的第二列值为ty003 当前处理的是第4, 内容是:1511230102 ty004, 它的第一列值是1511230102,...它的第二列值为ty004 当前处理的是第5, 内容是:1411230102 ty002, 它的第一列值是1411230102, 它的第二列值为ty002 当前处理的是第6, 内容是...它的第一列值是1412290102, 它的第二列值为yt012 当前处理的是第8, 内容是:1510230102 yt022, 它的第一列值是1510230102,...它的第二列值为yt022 当前处理的是第9, 内容是:1512231212 yt032, 它的第一列值是1512231212, 它的第二列值yt032 版权声明:本文博客原创文章

    2K40

    Python学习笔记(3):数据集操作-列的统一操作

    对数据库查询,将得到一个数据集: rs=AccessDB.GetData("select * from log where f_code='600259' limit 5,5") 结果的每行对应一个元组...数据集是一个游标,只能用一次,如果需要反复查询,可以转换为列表再操作。 ? 但是,如果只能通过逐行循环来处理,就和以前的程序没啥区别了。...我设定了一个小目标:合计一下第8列(金额),看Python能否有所不同。 尝试1:用map取出第8列,再用reduce合并。 ?...其中需要注意,reduce中,前一次的结果将作为参数参与下一次的计算,但到底是第几个参数,写了一个代码试验了一下,应该是第一个: ?...python的分支判断取值,有两种方式:  条件 and 真的取值 or 假的取值  真的取值 if 条件 else 假的取值 但第一种在真的取值为“假”时会错误,所以使用第二种。

    92490

    Python 数据处理 合并二维数组和 DataFrame 中特定列的值

    pandas.core.frame.DataFrame; 生成一个随机数数组; 将这个随机数数组与 DataFrame 中的数据列合并成一个新的 NumPy 数组。...numpy 是 Python 中用于科学计算的基础库,提供了大量的数学函数工具,特别是对于数组的操作。pandas 是基于 numpy 构建的一个提供高性能、易用数据结构和数据分析工具的库。...然后使用 pd.DataFrame (data) 将这个字典转换成了 DataFrame df。在这个 DataFrame 中,“label” 作为列名,列表中的元素作为数据填充到这一列中。...random_array = np.random.rand(4, 2) 此行代码使用 numpy 库生成一个形状为 4x2(即 4 行 2 列)的随机数数组。...运行结果如下: 总结来说,这段代码通过合并随机数数组和 DataFrame 中特定列的值,展示了如何在 Python 中使用 numpy 和 pandas 进行基本的数据处理和数组操作。

    15700

    【猫狗数据集】谷歌colab之使用pytorch读取自己数据集(猫狗数据集)

    /p/12398285.html创建好了数据集,将它上传到谷歌colab ?...在utils中的rdata.py定义了读取该数据集的代码: from torch.utils.data import DataLoader import torchvision import torchvision.transforms...torchvision.datasets.ImageFolder读取数据集指定train和test文件夹 train_data = torchvision.datasets.ImageFolder(train_path...test_data.imgs) #返回从所有文件夹中得到的图片的路径以及其类别 ImageFolder可以读取我们的train或test下面的文件夹,并为每一个标签进行编码,同时将图片与标签进行对应。...说明我们创建的数据集是可以用的了。 有了数据集,接下来就是网络的搭建以及训练和测试了。

    99720

    Python学习笔记(3):数据集操作-列的统一操作

    对数据库查询,将得到一个数据集: rs=AccessDB.GetData("select * from log where f_code='600259' limit 5,5") 结果的每行对应一个元组...数据集是一个游标,只能用一次,如果需要反复查询,可以转换为列表再操作。 ? 但是,如果只能通过逐行循环来处理,就和以前的程序没啥区别了。...我设定了一个小目标:合计一下第8列(金额),看Python能否有所不同。 尝试1:用map取出第8列,再用reduce合并。 ?...其中需要注意,reduce中,前一次的结果将作为参数参与下一次的计算,但到底是第几个参数,写了一个代码试验了一下,应该是第一个: ?...python的分支判断取值,有两种方式:  条件 and 真的取值 or 假的取值  真的取值 if 条件 else 假的取值 但第一种在真的取值为“假”时会错误,所以使用第二种。

    1.1K60

    Python使用pandas读取excel表格数据

    导入 import pandas as pd 若使用的是Anaconda集成包则可直接使用,否则可能需要下载:pip install pandas 读取表格并得到表格行列信息 df=pd.read_excel...格式: 直接print(df)得到的结果: 对比结果和表格,很显然表格中的第一行(黄色高亮部分)被定义为数据块的列下标,而实际视作数据的是后四行(蓝色高亮部分);并且自动在表格第一列之前加了一个行索引...比如我上述例子中列索引为表格的第一行{1,2,3,4},而行索引为读取时自动添加的。 经过实验这种情况将会优先使用表格行列索引,也就对应了上面代码中得到的结果。...在表格中自定义行列索引的情况 如果表格是下面这样的形式: 想要让读取得到的DataFrame行索引为{‘one’,‘two’,‘three’,‘four’},列索引为{‘一’,‘二’,‘三’,...行第1列的数据为:',df.iloc[0,1]) print('第three行第二列的数据为:',df.loc['three','二']) 得到的输出如下所示: 发布者:全栈程序员栈长,转载请注明出处

    3.2K10

    cifar10数据集的读取PythonTensorflow

    我们定义一些变量,因为针对的是cifar10数据集,所以变量的值都是固定的,为什么定义这些变量呢,因为变量的名字可以很直观的告诉我们这个数字的代表什么,试想如果代码里面全是些数字...,首先将数据集中的数据读取进来作为buf buf = bytestream.read(TRAIN_NUM * (IMAGE_SIZE * IMAGE_SIZE * NUM_CHANNELS...,np.shape[0]返回行数,对于一维数据返回的是元素个数,如果读取了5个文件的所有训练数据,那么现在的num_labels的值应该是50000 num_labels = labels_dense.shape...,如果读取了5个文件的所有训练数据,那么现在的num_labels的值应该是50000 num_labels = labels_dense.shape[0] #生成[0,1,2...].../') cc.next_train_batch(100) if __name__ == '__main__': main() 以上就是我对cifar10数据集读取的理解

    60030
    领券