首页
学习
活动
专区
圈层
工具
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

python中的copula:Frank、Clayton和Gumbel copula模型估计与可视化|附代码数据

最重要的是,它们允许你将依赖关系与边缘分布分开研究。有时你对边缘分布的信息比对数据集的联合函数的信息更多,而copulas允许你建立关于依赖关系的 "假设 "情景。...copulas可以通过将一个联合分布拟合到均匀分布的边缘分布上而得到,这个边缘分布是通过对你感兴趣的变量的cdf进行量化转换而得到的。 ...我们对样本x和y拟合了三个族(Frank, Clayton, Gumbel)的copulas,然后从拟合的copulas中提取了一些样本,并将采样输出与原始样本绘制在一起,以观察它们之间的比较。    ...选择将一些参数拟合到一个scipy分布上,然后在一些样本上使用该函数的CDF方法,或者用一个经验CDF工作。这两种方法在笔记本中都有实现。...如果你想把这段代码改编成你自己的真实数据。

1.8K00

python中Copula在多元联合分布建模可视化2实例合集|附数据代码

我们将从简单的二元Copula模型开始,逐步过渡到更复杂的多元模型,并介绍如何使用不同的Copula类型和参数来适应不同的数据特性。...如果它们彼此独立,我们可以单独从每个PDF中进行抽样。这里我们使用一个方便的类来执行相同的操作。 可重复性¶ 从copula生成可重复的随机值需要显式地设置seed参数。...我们对样本x和y拟合了三个族(Frank, Clayton, Gumbel)的copulas,然后从拟合的copulas中提取了一些样本,并将采样输出与原始样本绘制在一起,以观察它们之间的比较。...选择将一些参数拟合到一个scipy分布上,然后在一些样本上使用该函数的CDF方法,或者用一个经验CDF工作。这两种方法在笔记本中都有实现。...如果你想把这段代码改编成你自己的真实数据,。

12110
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    python中Copula在多元联合分布建模可视化2实例合集|附数据代码

    我们将从简单的二元Copula模型开始,逐步过渡到更复杂的多元模型,并介绍如何使用不同的Copula类型和参数来适应不同的数据特性。...如果它们彼此独立,我们可以单独从每个PDF中进行抽样。这里我们使用一个方便的类来执行相同的操作。 可重复性¶ 从copula生成可重复的随机值需要显式地设置seed参数。...我们对样本x和y拟合了三个族(Frank, Clayton, Gumbel)的copulas,然后从拟合的copulas中提取了一些样本,并将采样输出与原始样本绘制在一起,以观察它们之间的比较。...选择将一些参数拟合到一个scipy分布上,然后在一些样本上使用该函数的CDF方法,或者用一个经验CDF工作。这两种方法在笔记本中都有实现。...如果你想把这段代码改编成你自己的真实数据,。

    9110

    手把手教你用Python画直方图:其实跟柱状图完全不同

    作者:屈希峰,资深Python工程师,知乎多个专栏作者 来源:大数据DT(ID:hzdashuju) ? 01 概述 直方图(Histogram),形状类似柱状图却有着与柱状图完全不同的含义。...直方图牵涉统计学概念,首先要对数据进行分组,然后统计每个分组内数据元的数量。在平面直角坐标系中,横轴标出每个组的端点,纵轴表示频数,每个矩形的高代表对应的频数,这样的统计图称为频数分布直方图。...pdf = 1/(sigma * np.sqrt(2*np.pi)) * np.exp(-(x-mu)**2 / (2*sigma**2)) cdf = (1+scipy.special.erf...左右边界、拟合曲线的x坐标、方法通过定义矩形的四边边界,PDF为概率密度函数,CDF为累积分布函数。...延伸阅读《Python数据可视化》 点击上图了解及购买 转载请联系微信:DoctorData 推荐语:从图形绘制、数据动态展示、Web交互等维度全面讲解Bokeh功能和使用,不含复杂数据处理和算法,深入浅出

    2.3K30

    正态性检验

    分位数就是将数据从小到大排序,然后切成100份,看不同位置处的值。比如中位数,就是中间位置的值。 Q-Q图的x轴为分位数,y轴为分位数对应的样本值。...x-y是散点图的形式,通过散点图可以拟合出一条直线,如果这条直线是从左下角到右上角的一条直线,则可以判断数据符合正态分布,否则则不可以。 ? 拟合出来的这条直线和正态分布之间有什么关系呢?...在Python中可以使用如下代码来绘制Q-Q图: from scipy import stats fig = plt.figure() res = stats.probplot(x, plot=plt)...在Python中有现成的包可以直接用于KS检验: from scipy.stats import kstest kstest(x,cdf = "norm") x表示待检验的样本集,cdf用来指明要判断的已知分布类型...03.非正态数据的处理办法 一般数据不是正态就是偏态,如果偏态不严重可以对数据取平方根来进行转换。如果偏态很严重,则可以对数据进行对数转换。转换方法在偏态文章中也有讲过。

    2K20

    用COPULA模型进行蒙特卡洛(MONTE CARLO)模拟和拟合股票收益数据分析|附代码数据

    此示例说明如何在变量之间存在复杂关系或单个变量来自不同分布时使用 copula 从多元分布生成数据。 算法 默认情况下,fit 使用最大似然将 copula 拟合到 u。...可以使用'Alpha' 名称-值对指定不同的置信区间 。 例子 将_t_  Copula拟合到股票收益数据 加载并绘制模拟股票收益数据。...density(x,x,'fuctin','cdf'); hist(u,v) 将_t_  copula拟合 到数据中。...事实上,从真实数据中可以知道相同的随机条件会影响两个来源,而在模拟中忽略这一点可能会导致错误的结论。 独立对数正态随机变量的模拟是微不足道的。最简单的方法是使用lognrnd函数。...t Copulas 可以通过从二元 t 分布开始并使用相应的 t CDF 进行转换来构建不同的 copula 族。二元 t 分布使用 Rho(线性相关矩阵)和 nu(自由度)进行参数化。

    60400

    用COPULA模型进行蒙特卡洛(MONTE CARLO)模拟和拟合股票收益数据分析|附代码数据

    此示例说明如何在变量之间存在复杂关系或单个变量来自不同分布时使用 copula 从多元分布生成数据。 算法 默认情况下,fit 使用最大似然将 copula 拟合到 u。...density(x,x,'fuctin','cdf'); hist(u,v) 将_t_  copula拟合 到数据中。...事实上,从真实数据中可以知道相同的随机条件会影响两个来源,而在模拟中忽略这一点可能会导致错误的结论。 独立对数正态随机变量的模拟是微不足道的。最简单的方法是使用lognrnd函数。...t Copulas 可以通过从二元 t 分布开始并使用相应的 t CDF 进行转换来构建不同的 copula 族。二元 t 分布使用 Rho(线性相关矩阵)和 nu(自由度)进行参数化。...这等效于使用经验逆 CDF 的平滑版本。 ---- 本文摘选 《 MATLAB用COPULA模型进行蒙特卡洛(MONTE CARLO)模拟和拟合股票收益数据分析 》 ----

    68000

    用COPULA模型进行蒙特卡洛(MONTE CARLO)模拟和拟合股票收益数据分析|附代码数据

    此示例说明如何在变量之间存在复杂关系或单个变量来自不同分布时使用 copula 从多元分布生成数据。 算法 默认情况下,fit 使用最大似然将 copula 拟合到 u。...density(x,x,'fuctin','cdf'); hist(u,v) 将_t_  copula拟合 到数据中。...事实上,从真实数据中可以知道相同的随机条件会影响两个来源,而在模拟中忽略这一点可能会导致错误的结论。 独立对数正态随机变量的模拟是微不足道的。最简单的方法是使用lognrnd函数。...t Copulas 可以通过从二元 t 分布开始并使用相应的 t CDF 进行转换来构建不同的 copula 族。二元 t 分布使用 Rho(线性相关矩阵)和 nu(自由度)进行参数化。...这等效于使用经验逆 CDF 的平滑版本。 ---- 本文摘选 《 MATLAB用COPULA模型进行蒙特卡洛(MONTE CARLO)模拟和拟合股票收益数据分析 》

    76020

    Python中概率累计分布函数(CDF)分析

    可使用 CDF 确定取自总体的随机观测值将小于或等于特定值的概率。还可以使用此信息来确定观测值将大于特定值或介于两个值之间的概率。...CDF 曲线从 0% 的概率上升到 100% 的概率,而 CCDF 曲线则从 100% 的概率下降到 0% 的概率。 累积分布函数(CDF)=∫PDF(曲线下的面积 = 1 或 100%)。...PDF与CDF对比示意图 在 Python 中使用scipy.stats.norm.ppf()计算 CDF import numpy as np from scipy.stats import norm...#scipy.stats.norm.ppf(0.95, loc=0,scale=1)返回累积分布函数中概率等于0.95对应的x值(CDF函数中已知y求对应的x)。...['Rds','Fre'] # # 将数据列表从小到大排列,然后将每个数据出现的概率进行叠加 # #利用cumsum函数进行概率的累加并按照顺序添加到表格中 Fre_df['cumsum

    12.6K30

    用COPULA模型进行蒙特卡洛(MONTE CARLO)模拟和拟合股票收益数据分析|附代码数据

    此示例说明如何在变量之间存在复杂关系或单个变量来自不同分布时使用 copula 从多元分布生成数据。 算法 默认情况下,fit 使用最大似然将 copula 拟合到 u。...可以使用'Alpha' 名称-值对指定不同的置信区间 。 例子 将_t_  Copula拟合到股票收益数据 加载并绘制模拟股票收益数据。...density(x,x,'fuctin','cdf'); hist(u,v) 将_t_  copula拟合 到数据中。...事实上,从真实数据中可以知道相同的随机条件会影响两个来源,而在模拟中忽略这一点可能会导致错误的结论。 独立对数正态随机变量的模拟是微不足道的。最简单的方法是使用lognrnd函数。...t Copulas 可以通过从二元 t 分布开始并使用相应的 t CDF 进行转换来构建不同的 copula 族。二元 t 分布使用 Rho(线性相关矩阵)和 nu(自由度)进行参数化。

    50530

    用COPULA模型进行蒙特卡洛(MONTE CARLO)模拟和拟合股票收益数据分析|附代码数据

    此示例说明如何在变量之间存在复杂关系或单个变量来自不同分布时使用 copula 从多元分布生成数据。 算法 默认情况下,fit 使用最大似然将 copula 拟合到 u。...density(x,x,'fuctin','cdf'); hist(u,v) 将_t_  copula拟合 到数据中。...事实上,从真实数据中可以知道相同的随机条件会影响两个来源,而在模拟中忽略这一点可能会导致错误的结论。 独立对数正态随机变量的模拟是微不足道的。最简单的方法是使用lognrnd函数。...t Copulas 可以通过从二元 t 分布开始并使用相应的 t CDF 进行转换来构建不同的 copula 族。二元 t 分布使用 Rho(线性相关矩阵)和 nu(自由度)进行参数化。...这等效于使用经验逆 CDF 的平滑版本。 本文摘选 《 MATLAB用COPULA模型进行蒙特卡洛(MONTE CARLO)模拟和拟合股票收益数据分析 》

    1K40

    用COPULA模型进行蒙特卡洛(MONTE CARLO)模拟和拟合股票收益数据分析

    此示例说明如何在变量之间存在复杂关系或单个变量来自不同分布时使用 copula 从多元分布生成数据。 算法 默认情况下,fit 使用最大似然将 copula 拟合到 u。...可以使用'Alpha' 名称-值对指定不同的置信区间 。 例子 将_t_ Copula拟合到股票收益数据 加载并绘制模拟股票收益数据。...density(x,x,'fuctin','cdf'); hist(u,v) 将_t_ copula拟合 到数据中。...事实上,从真实数据中可以知道相同的随机条件会影响两个来源,而在模拟中忽略这一点可能会导致错误的结论。 独立对数正态随机变量的模拟是微不足道的。最简单的方法是使用lognrnd函数。...t Copulas 可以通过从二元 t 分布开始并使用相应的 t CDF 进行转换来构建不同的 copula 族。二元 t 分布使用 Rho(线性相关矩阵)和 nu(自由度)进行参数化。

    2.7K12

    opencv(4.5.3)-python(二十四)--直方图均衡化

    为此,我们需要一个转换函数,将较亮区域的输入像素映射到完整区域的输出像素。这就是直方图均衡化的作用。 现在我们找到直方图的最小值(不包括0),然后应用wiki页面中给出的直方图均衡化公式。...但我在这里使用了Numpy中的掩膜数组概念。对于掩膜数组,所有的操作都是在非掩膜的元素上进行的。你可以从Numpy关于掩膜数组的文档中读到更多关于它的信息。...另一个重要的特点是,即使图像是一个较暗的图像(而不是我们使用的一个较亮的图像),在均衡后,我们将得到与上述图像几乎相同的图像。因此,这被用作一个 "参考工具",使所有图像具有相同的照明条件。...例如,在人脸识别中,在训练人脸数据之前,对人脸图像进行直方图均衡化,使其具有相同的照明条件。 OpenCV中的直方图均衡化 OpenCV有一个函数可以做到这一点,即cv.equalizeHist()。...在许多情况下,这并不是一个好主意。例如,下面的图片显示了一张输入图片和全局直方图均衡化后的结果。 诚然,在直方图均衡化之后,背景对比度得到了改善。但比较两张图片中的雕像的脸。

    1.1K30

    新技能 Get,使用直方图处理进行颜色校正

    作者 | 小白 来源 | 小白学视觉 在这篇文章中,我们将探讨如何使用直方图处理技术来校正图像中的颜色。 像往常一样,我们导入库,如numpy和matplotlib。...直方图处理的目的是将图像的实际 CDF 拉伸到新的目标 CDF 中。通过这样做,倾斜到较低光谱的强度值将转换为较高的强度值,从而使图像变亮。...就像我们在灰度图像中所做的一样,我们还将每个通道的实际 CDF 转换为目标 CDF。 校正每个通道的直方图后,我们需要使用 numpy stack函数将这些通道堆叠在一起。...现在,让我们尝试使用其他函数作为目标 CDF 来改进这一点。为此,我们将使用该scipy.stats库导入各种分布,还创建了一个函数来简化我们的分析。...distribution(cathedral, logistic, 90, 30); 请注意,门中的灯光如何从线性和Cauchy分布改进为逻辑分布的。这是因为逻辑函数的上谱几乎与原始 CDF 一致。

    45320

    使用直方图处理进行颜色校正

    在这篇文章中,我们将探讨如何使用直方图处理技术来校正图像中的颜色。 像往常一样,我们导入库,如numpy和matplotlib。...直方图处理的目的是将图像的实际 CDF 拉伸到新的目标 CDF 中。通过这样做,倾斜到较低光谱的强度值将转换为较高的强度值,从而使图像变亮。...就像我们在灰度图像中所做的一样,我们还将每个通道的实际 CDF 转换为目标 CDF。 校正每个通道的直方图后,我们需要使用 numpy stack函数将这些通道堆叠在一起。...现在,让我们尝试使用其他函数作为目标 CDF 来改进这一点。为此,我们将使用该scipy.stats库导入各种分布,还创建了一个函数来简化我们的分析。...distribution(cathedral, logistic, 90, 30); 请注意,门中的灯光如何从线性和Cauchy分布改进为逻辑分布的。这是因为逻辑函数的上谱几乎与原始 CDF 一致。

    54920

    OpenCV系列之直方图-2:直方图均衡 | 二十七

    作者:磐怼怼 转载自:深度学习与计算机视觉 未经允许不得二次转载 目标 在本节中, 我们将学习直方图均衡化的概念,并利用它来提高图像的对比度。...您可以从Numpy文档中了解更多关于掩码数组的信息。...另一个重要的特征是,即使图像是一个较暗的图像(而不是我们使用的一个较亮的图像),经过均衡后,我们将得到几乎相同的图像。因此,这是作为一个“参考工具”,使所有的图像具有相同的照明条件。...例如,在人脸识别中,在对人脸数据进行训练之前,对人脸图像进行直方图均衡化处理,使其具有相同的光照条件。 OpenCV中的直方图均衡 OpenCV具有执行此操作的功能cv.equalizeHist()。...(clipLimit=2.0, tileGridSize=(8,8)) cl1 = clahe.apply(img) cv.imwrite('clahe_2.jpg',cl1) 查看下面的结果,并将其与上面的结果进行比较

    1.2K10

    Copula估计边缘分布模拟收益率计算投资组合风险价值VaR与期望损失ES

    然后,我使用该模型生成模拟值,并使用实际收益和模拟收益来测试模型投资组合的性能,以计算风险价值(VaR)与期望损失(ES)。 一、介绍与概述 Copulas 对多元分布中变量之间的相关性进行建模。...它们允许将多变量依赖关系与单变量边缘分布相结合,允许我们对构成多变量数据的每个变量使用许多单变量模型。Copulas 在 2000 年代开始流行。...CDF,其边缘分布都是 Uniform (0,1)。...有了 copula 和边缘,我们将使用模型来确定投资的风险价值 (VaR) 和预期损失 (ES)。 三、算法实现与开发 像往常一样,我们从读取文件开始。...# params 列表的第一项(估计) sapply (sapply(pams,3)) 图 4 显示了拟合分布与来自变量的真实数据进行比较的图。

    1K20

    Copula估计边缘分布模拟收益率计算投资组合风险价值VaR与期望损失ES|附代码数据

    一、介绍与概述 Copulas 对多元分布中变量之间的相关性进行建模。它们允许将多变量依赖关系与单变量边缘分布相结合,允许我们对构成多变量数据的每个变量使用许多单变量模型。...CDF,其边缘分布都是 Uniform (0,1)。...很容易证明,每个  都是 Uniform(0,1)。因此,  的 CDF 根据定义是一个 copula。...点击标题查阅往期内容 R语言多元Copula GARCH 模型时间序列预测 左右滑动查看更多 01 02 03 04 三、算法实现与开发 像往常一样,我们从读取文件开始。...# params 列表的第一项(估计) sapply (sapply(pams,3)) 图 4 显示了拟合分布与来自变量的真实数据进行比较的图。

    46210

    SciPy从入门到放弃

    SciPy简介 SciPy是一种以NumPy为基础,用于数学、工程及许多其他的科学任务的科学计算包,其使用的基本数据结构是由NumPy模块提供的多维数组,因此Numpy和SciPy协同使用可以更加高效地解决问题...SciPy中本专业比较重要且常用的有优化、线性代数、统计这三个模块: 拟合与优化模块(scipy.optimize): scipy.optimize提供了很多数值优化算法,包括多元标量函数的无约束极小化...求解该类问题最小值的方法一般是从初始点开始使用梯度下降法求解,因此模型输入中需要指定要求解的函数以及初始点,在optimize模块中可以使用bfgs算法(牛顿算法),代码及返回结果如下: optimize.fmin_bfgs...曲线拟合 下面将通过最小二乘法拟合余弦函数。...此部分与NumPy使用方法类似,更多矩阵操作查阅:NumPy从入门到放弃。

    7610
    领券