首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

使用sigmoid激活的python中从头开始的神经网络

从头开始构建神经网络是指使用基本的数学运算和编程语言来实现神经网络的各个组件,而不依赖于现有的深度学习框架。在Python中,我们可以使用sigmoid激活函数来构建一个简单的神经网络。

首先,我们需要导入所需的库:

代码语言:python
代码运行次数:0
复制
import numpy as np

接下来,我们定义一个sigmoid函数,它将输入的值映射到0和1之间:

代码语言:python
代码运行次数:0
复制
def sigmoid(x):
    return 1 / (1 + np.exp(-x))

然后,我们定义一个神经网络类,其中包含初始化函数、前向传播函数和反向传播函数:

代码语言:python
代码运行次数:0
复制
class NeuralNetwork:
    def __init__(self, input_size, hidden_size, output_size):
        self.input_size = input_size
        self.hidden_size = hidden_size
        self.output_size = output_size
        
        # 初始化权重和偏置
        self.W1 = np.random.randn(self.input_size, self.hidden_size)
        self.b1 = np.zeros((1, self.hidden_size))
        self.W2 = np.random.randn(self.hidden_size, self.output_size)
        self.b2 = np.zeros((1, self.output_size))
        
    def forward(self, X):
        # 前向传播
        self.z1 = np.dot(X, self.W1) + self.b1
        self.a1 = sigmoid(self.z1)
        self.z2 = np.dot(self.a1, self.W2) + self.b2
        self.a2 = sigmoid(self.z2)
        return self.a2
    
    def backward(self, X, y, learning_rate):
        # 反向传播
        m = X.shape[0]
        
        # 计算输出层的误差
        self.delta2 = self.a2 - y
        
        # 计算隐藏层的误差
        self.delta1 = np.dot(self.delta2, self.W2.T) * (self.a1 * (1 - self.a1))
        
        # 更新权重和偏置
        self.W2 -= learning_rate * np.dot(self.a1.T, self.delta2) / m
        self.b2 -= learning_rate * np.sum(self.delta2, axis=0, keepdims=True) / m
        self.W1 -= learning_rate * np.dot(X.T, self.delta1) / m
        self.b1 -= learning_rate * np.sum(self.delta1, axis=0, keepdims=True) / m

最后,我们可以使用这个神经网络来训练和预测数据:

代码语言:python
代码运行次数:0
复制
# 创建神经网络对象
nn = NeuralNetwork(input_size=2, hidden_size=3, output_size=1)

# 定义输入和标签数据
X = np.array([[0, 0], [0, 1], [1, 0], [1, 1]])
y = np.array([[0], [1], [1], [0]])

# 训练神经网络
for i in range(10000):
    nn.forward(X)
    nn.backward(X, y, learning_rate=0.1)

# 预测新数据
new_data = np.array([[0, 0], [0, 1], [1, 0], [1, 1]])
predictions = nn.forward(new_data)
print(predictions)

这是一个简单的使用sigmoid激活函数的神经网络示例。在实际应用中,我们可以根据具体的问题和数据集来调整网络的结构和参数,以获得更好的性能。

关于腾讯云相关产品和产品介绍链接地址,可以参考腾讯云官方文档或咨询腾讯云客服获取更详细的信息。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

神经网络中的激活函数具体是什么?为什么ReLu要好过于tanh和sigmoid function?

最早的想法是sigmoid函数或者tanh函数,输出有界,很容易充当下一层输入(以及一些人的生物解释balabala)。激活函数的作用是为了增加神经网络模型的非线性。...第一,采用sigmoid等函数,算激活函数时(指数运算),计算量大,反向传播求误差梯度时,求导涉及除法,计算量相对大,而采用Relu激活函数,整个过程的计算量节省很多。...Sigmoid函数 ? ? Sigmoid函数是深度学习领域开始时使用频率最高的activation function。它是便于求导的平滑函数,其导数为,这是优点。...类似于Leaky ReLU,理论上虽然好于ReLU,但在实际使用中目前并没有好的证据ELU总是优于ReLU。...小结 建议使用ReLU函数,但是要注意初始化和learning rate的设置;可以尝试使用Leaky ReLU或ELU函数;不建议使用tanh,尤其是sigmoid函数。

3K100
  • 神经网络中的激活函数

    在神经网络中,有一个重要的概念就是激活函数(activation function),正好在网上看到这样一篇介绍激活函数的文章,于是翻译出来,原文地址:https://towardsdatascience.com...它只是一个添加到神经网络输出端的节点,也被称为传递函数。它也可以连接两个神经网络。 为什么使用神经网络的激活函数?...图: Logistic Sigmoid函数 使用sigmoid函数的主要原因在于其输出在0到1之间。因此,它特别适用于输出为概率预测的模型。...logistic sigmoid函数会导致神经网络在训练时卡住。 softmax函数是用于多类分类的更广义的逻辑激活函数。 2....tanh和logistic sigmoid激活函数都用在前馈网络中。 3. ReLU(整流线性单位)激活函数 ReLU是目前世界上使用最多的激活函数,因为它几乎用于所有的卷积神经网络或深度学习中。

    1.6K30

    神经网络中的激活函数-tanh

    为什么要引入激活函数 如果不用激励函数(其实相当于激励函数是f(x) = x),在这种情况下你每一层输出都是上层输入的线性函数,很容易验证,无论你神经网络有多少层,输出都是输入的线性组合,与没有隐藏层效果相当...最早的想法是sigmoid函数或者tanh函数,输出有界,很容易充当下一层输入(以及一些人的生物解释balabala)。激活函数的作用是为了增加神经网络模型的非线性。...否则你想想,没有激活函数的每层都相当于矩阵相乘。就算你叠加了若干层之后,无非还是个矩阵相乘罢了。所以你没有非线性结构的话,根本就算不上什么神经网络。...tanh的绘制 tanh是双曲函数中的一个,tanh()为双曲正切。在数学中,双曲正切“tanh”是由基本双曲函数双曲正弦和双曲余弦推导而来。 公式 ?...相关资料 1、python绘制神经网络中的Sigmoid和Tanh激活函数图像(附代码) - CSDN博客; 2、神经网络中的激活函数具体是什么?

    77230

    使用Python和R语言从头开始理解和编写神经网络

    在与其他人交流的过程中,我发现人们不用花时间来发展这种直觉,所以他们能够以正确的方式努力地去解决问题。 在本文中,我将从头开始讨论一个神经网络的构建,更多地关注研究这种直觉上的知识来实现神经网络。...我们将在“Python”和“R”中编写代码。读完本篇文章后,您将了解神经网络如何工作,如何初始化权重,以及如何使用反向传播进行更新。 让我们开始吧!...目录 神经网络背后的简单直觉知识 多层感知器及其基础知识 涉及神经网络方法的步骤 可视化神经网络工作方法的步骤 使用Numpy(Python)实现NN 使用R实现NN [可选]反向传播算法的数学观点 神经网络背后的直观知识...结束语 本文主要从头开始构建神经网络,并了解其基本概念。...因此,在即将到来的文章中,我将解释在Python中使用神经网络的应用,并解决与以下问题相关的现实生活中的挑战: 1、计算机视觉 2、言语 3、自然语言处理 我在写这篇文章的时候感到很愉快,并希望从你的反馈中学习

    914150

    使用Python中从头开始构建决策树算法

    并且再其之上的随机森林和提升树等算法一直是表格领域的最佳模型,所以本文将介绍理解其数学概念,并在Python中动手实现,这可以作为了解这类算法的基础知识。...在Python中实现决策树算法 有了以上的基础,就可以使用Python从头开始编写Decision Tree算法。 首先导入基本的numpy库,它将有助于我们的算法实现。...预测方法使用训练好的决策树进行预测。如果到达一个叶节点(带有标签的节点),它将叶节点的标签分配给X中的所有数据点。...,并且可以使用不同的算法来进行计算,比如ID3 算法使用信息增益作为特征选择的标准,该标准度量了将某特征用于划分数据后,对分类结果的不确定性减少的程度。...ID3、C4.5 和 CART 算法都是基于决策树的经典算法,像Xgboost就是使用的CART 作为基础模型。 总结 以上就是使用Python中构造了一个完整的决策树算法的全部。

    31630

    人工智能|神经网络中的激活函数

    问题描述 激活函数是深度学习,也是人工神经网络中一个十分重要的学习内容,对于人工神经网络模型去学习、理解非常复杂和非线性的函数来说具有非常重要的作用。那么,激活函数的作用应该如何来理解呢?...如果希望神经网络能够处理复杂任务,但线性变换无法执行这样的任务,使用激活函数就能对输入进行非线性变换,使其能够学习和执行更复杂的任务。下面,就一起来了解常用的激活函数吧。...在tensorflow中,用tf.sigmoid(x)直接调用这个函数使用。 Sigmoid函数的数学公式和函数图像如下: ? ?...在神经网络中,隐藏层之间的输出大多需要通过激活函数来映射,在构建模型时,需要根据实际数据情况选择激活函数。...TensorFlow中的激活函数不止这4种,本文只是介绍最常用的4个,当然,其他激活函数大多是这几个激活函数的扩展变换形式。

    2K20

    神经网络的激活函数

    激活函数主要用来向神经网络中加入非线性因素,以解决线性模型表达能力不足的问题,它对神经网络有着极其重要的作用。我们的网络参数在更新时,使用的反向传播算法(BP),这就要求我们的激活函数必须可微。...一般来说, sigmoid 网络在 5 层之内就会产生梯度消失现象。而且,该激活函数并不是以 0 为中心的,所以在实践中这种激活函数使用的很少。sigmoid函数一般只用于二分类的输出层。...plt.show() if __name__ == '__main__': test() 在神经网络中,一个神经元的输出可以通过Sigmoid函数来表示其被激活的概率,接近1的值表示高度激活...在神经网络的前向传播过程中,每个隐藏层的神经元都会对其输入执行线性变换(通过权重和偏差),然后应用激活函数。...不要使用sigmoid激活函数,可以尝试使用tanh激活函数 对于输出层: 二分类问题选择sigmoid激活函数 多分类问题选择softmax激活函数 回归问题选择identity激活函数

    11010

    理解神经网络的激活函数

    导言 激活函数在神经网络中具有重要的地位,对于常用的函数如sigmoid,tanh,ReLU,不少读者都已经非常熟悉。但是你是否曾想过这几个问题: 为什么需要激活函数? 什么样的函数可以做激活函数?...上面这些结论的函数输出值都是一个标量,但我们可以把它推广的向量的情况,神经网络的输出一般是一个向量。 只要网络规模设计得当,使用sigmoid函数和ReLU函数作为激活函数的逼近能力都能够得到保证。...文献[7][8]分析了使用ReLU激活函数的神经网络的逼近能力。下图是一个非线性分类问题的例子,说明了神经网络确实能处理这种非线性问题: ?...文献[10]对深层神经网络难以训练的问题进行了理论分析和实验验证。在实验中,作者训练了有1-5个隐藏层的神经网络,每个隐藏层有1000个神经元,输出层使用softmax logistic回归函数。...激活函数使用了sigmoid,tanh,以及softsign: ? 权重初始化公式为: ? 其中,U[a, b]是[a, b]中的均匀分布,n是前一层的尺寸。

    1.2K20

    使用python创建自己的第一个神经网络模型吧!

    ); 每个隐藏层使用的激活函数(activation function); 在本文教程中,使用的是简单的Sigmoid激活函数,但注意一点,在深层神经网络模型中, sigmoid激活函数一般不作为首选...此外,理解神经网络如何工作的最好方法是学习如何在不使用任何工具箱的前提下从头开始构建一个。在本文中,我们将演示如何使用Python创建一个简单的神经网络。...从表中看到,输出的值始终等于输入节中的第一个值。因此,我们可以期望新情形的输出(?)值为1。 下面让我们看看是否可以使用一些Python代码来得到相同的结果。...创建神经网络类|NeuralNetwork Class 我们将在Python中创建一个NeuralNetwork类来训练神经元以提供准确的预测,该类还包含其他辅助函数。...函数 我们将使用Sigmoid函数,它绘制出一个“S”形曲线,将其作为本文创建的神经网络的激活函数。

    1.4K20

    神经网络的激活函数总结

    SIGAI-AI学习交流群的目标是为学习者提供一个AI技术交流与分享的平台。 导言 激活函数在神经网络中具有重要的地位。...在SIGAI之前的公众号文章“理解神经网络的激活函数”中,我们回答了3个关键的问题: ‍‍‍为什么需要激活函数? 什么样的函数能用作激活函数? 什么样的函数是好的激活函数?‍‍‍...由于激活函数没有需要学习训练得到的参数,因此无需根据误差项计算本层参数的导数值。 在神经网络的早期阶段,sigmoid函数,tanh被广为使用。...如果你对梯度消失问题,激活函数的饱和性还不清楚,请阅读我们之前的公众号文章“理解神经网络的激活函数”。 由于当前被提出的激活函数众多,为了便于大家理解与记忆,我们对此做了总结。...SigmoidLayer类实现了标准sigmoid激活函数。正向传播函数对每个输入数据计算sigmoid函数值,在这里count是输入数据的维数。实现代码如下: ?

    39620

    神经网络的激活函数总结

    导言 激活函数在神经网络中具有重要的地位。在SIGAI之前的公众号文章“理解神经网络的激活函数”中,我们回答了3个关键的问题: 为什么需要激活函数? 什么样的函数能用作激活函数?...什么样的函数是好的激活函数? 这篇文章从理论的角度介绍了激活函数的作用。承接上篇,在今天这篇文章中,SIGAI将为大家介绍当前深度学习中常用的一些激活函数,包括它们的工程实现。...这里的乘法是向量逐元素对应相乘。由于激活函数没有需要学习训练得到的参数,因此无需根据误差项计算本层参数的导数值。 在神经网络的早期阶段,sigmoid函数,tanh被广为使用。...在Caffe中,激活函数是一个单独的层,把它和全连接层,卷据层拆开的好处是更为灵活,便于代码复用和组合。因为无论是全连接层,还是卷据层,它们激活函数的实现是相同的,因此可以用一套代码来完成。...SigmoidLayer类实现了标准sigmoid激活函数。正向传播函数对每个输入数据计算sigmoid函数值,在这里count是输入数据的维数。

    1.1K00

    详解神经网络中的神经元和激活函数

    上一节我们举得例子中,数据集可以使用一条直线区分开。...sigmoid函数的代数式子如下: 其中的字母e表示欧拉常数,它的值约为2.71828。以后面对更复杂的问题时,我们还得使用更复杂的模拟函数,所有这些模拟神经元对电信号进行反应的函数统称为激活函数。...一个神经元会同时接收多个电信号,把这些电信号统一起来,用激活函数处理后再输出新的电信号,如下图: 神经网络算法中设计的神经元会同时接收多个输入参数,它把这些参数加总求和,然后代入用激活函数,产生的结果就是神经元输出的电信号...上图是一个两层网络,每个网络有两个节点,假设从第一次开始输入两个信号,分别是1,0.5: 第一层神经元直接把输入加总后分发到第二层,第二层神经元使用的激活函数是sigmoid, 神经元之间的信号权值如下...下一节我们将深入研究如何使用张量运算加快神经网络的运算,以及探讨如何通过误差调整网络中节点间的权值。

    93831

    使用python创建自己的第一个神经网络模型吧!

    每个隐藏层使用的激活函数(activation function);        在本文教程中,使用的是简单的Sigmoid激活函数,但注意一点,在深层神经网络模型中, sigmoid激活函数一般不作为首选...下图简单展示了一个神经网络结构:          此外,理解神经网络如何工作的最好方法是学习如何在不使用任何工具箱的前提下从头开始构建一个。...在本文中,我们将演示如何使用Python创建一个简单的神经网络。 ...创建神经网络类|NeuralNetwork Class         我们将在Python中创建一个NeuralNetwork类来训练神经元以提供准确的预测,该类还包含其他辅助函数。...函数         我们将使用Sigmoid函数,它绘制出一个“S”形曲线,将其作为本文创建的神经网络的激活函数。

    50220

    《C 语言神经网络中激活函数计算的深度剖析》

    当我们运用 C 语言来构建神经网络时,如何妥善处理激活函数的计算,成为了决定神经网络性能优劣的重要环节。激活函数在神经网络中的作用举足轻重。...它为神经网络引入了非线性因素,使得神经网络能够拟合各种复杂的函数关系,而非仅仅局限于线性变换。从简单的阶跃函数到常用的 Sigmoid、ReLU 等函数,每一种激活函数都有着独特的特性与适用场景。...在 C 语言实现神经网络时,准确地计算这些激活函数的值是让神经网络正常运作并有效学习的基础。以 Sigmoid 激活函数为例,它的数学表达式为   。在 C 语言中处理其计算时,需要考虑到数值稳定性。...并且,在 C 语言代码中,使用条件判断语句来实现 ReLU 函数的计算时,要考虑代码的效率,避免过多的分支预测失败导致性能下降,可以采用一些优化技巧,如将判断条件与数据处理相结合,减少不必要的指令执行。...在 C 语言实现神经网络时,激活函数的计算不仅仅局限于单个神经元的前向传播过程。在整个神经网络的训练过程中,激活函数的导数计算在反向传播算法中起着关键作用。

    10100

    神经网络中的神经元和激活函数介绍

    文章目录 1、什么是人工神经网络 2、什么是神经元 3、什么是激活函数 线性激活函数 Sigmoid激活函数 双曲正切激活函数 修正线性单元(ReLU)激活函数 Leaky ReLU激活函数 Softmax...激活函数 1、什么是人工神经网络 神经网络能够利用多层神经元学习复杂的模式,这些神经元会对数据进行数学变换。...它们是完全连接的,即一层中的每个节点都通过权重与下一层中的每个节点相连。 深度学习这一术语用于指代由许多隐藏层构建的机器学习模型:深度神经网络。...最佳拟合线性和非线性模型 线性激活函数 直线函数:a是一个常数 值可能会变得非常大 仅线性函数本身无法捕捉复杂的模式 Sigmoid激活函数 是一个非线性函数,因此可以捕捉更复杂的模式 输出值是有界的,...是一个非线性函数,因此可以捕捉更复杂的模式 尝试解决“ReLU死亡问题” 值可能会变得非常大 另外,除了使用0.01,它也可以是一个参数 ,该参数在训练过程中与权重一起学习。

    25410

    手把手教你用Python创建简单的神经网络(附代码)

    人工神经网络基本上由以下组件组成: 输入层:接收并传递数据 隐藏层 输出层 各层之间的权重 每个隐藏层都有一个激活函数。在这个简单的神经网络Python教程中,我们将使用Sigmoid激活函数。...下面的图表显示了一个简单的神经网络的结构: ? 了解神经网络如何工作的最佳方法是学习如何从头开始构建神经网络(而不是采用任何库)。...正如上表所示,输出值总是等于输入部分中的第一个值。因此,我们期望输出的值为1。 让我们看看是否可以使用Python代码来得出相同的结果(你可以在本文末尾仔细阅读这个项目的代码,然后再继续阅读本文)。...请注意,我们将生成随机数,以确保它们的有效分布。 1. 应用Sigmoid函数 我们将使用Sigmoid函数,来绘制一个特征“S”型曲线,作为神经网络的激活函数。 ?...当然,在这个例子中,我们只使用一个神经元网络来完成简单的任务。如果我们把几千个人工神经网络连接在一起,情况将会是怎样呢?我们能不能完全模仿人类的思维方式呢?

    3.6K40

    神经网络中常见的激活函数

    深度学习中已经成为了人工智能领域的必备工具,源于人工神经网络的研究,含多个隐藏层的多层感知器就是一种深度学习结构。...激活函数大多是非线性函数,才能将多层感知机的输出转换为非线性,使得神经网络可以任意逼近任何非线性函数,进而可以应用到众多的非线性模型中。...函数的图像如下所示: Sigmoid函数的优点在于它可导,并且值域在0到1之间,使得神经元的输出标准化,是神经网络最早采用的激活函数。...如果是回归模型,在输出层上可以使用线性激活函数。如果是浅层神经网络,如不超过4层的,可选择使用多种激励函数,没有太大的影响。如果网络中存在大量未激活神经元,可以考虑leaky ReLU函数。...一句话小结 激活函数是神经网络中的重要参数,一般地,Sigmoid 系列用于二分类任务输出层,softmax系列用于多分类任务输出层,tanh系列用于模型隐藏层,Relu系列用于回归任务以及卷积神经网络隐藏层

    1.8K70

    神经网络中的激活函数-tanh为什么要引入激活函数tanh的绘制公式特点图像python绘制tanh函数相关资料

    为什么要引入激活函数 如果不用激励函数(其实相当于激励函数是f(x) = x),在这种情况下你每一层输出都是上层输入的线性函数,很容易验证,无论你神经网络有多少层,输出都是输入的线性组合,与没有隐藏层效果相当...最早的想法是sigmoid函数或者tanh函数,输出有界,很容易充当下一层输入(以及一些人的生物解释balabala)。激活函数的作用是为了增加神经网络模型的非线性。...否则你想想,没有激活函数的每层都相当于矩阵相乘。就算你叠加了若干层之后,无非还是个矩阵相乘罢了。所以你没有非线性结构的话,根本就算不上什么神经网络。...tanh的绘制 tanh是双曲函数中的一个,tanh()为双曲正切。在数学中,双曲正切“tanh”是由基本双曲函数双曲正弦和双曲余弦推导而来。 公式 ?...相关资料 python绘制神经网络中的Sigmoid和Tanh激活函数图像(附代码) - CSDN博客 神经网络中的激活函数具体是什么?

    2.2K20

    【DL碎片3】神经网络中的激活(Activation)函数及其对比

    ---- 神经网络的每一层基本都是在一个线性运算后面来一个非线性激活函数(Activation function),再把值传给下一层的。激活函数有多种,这篇文章主要就是介绍各种激活函数和它们的对比。...其实,它的公式可以用一行来表示:a=max(z,0),在python中就是一行代码。...ReLU还有很多其他的变体,但是最最常使用的效果最稳定的还是ReLU。 因此,之后在设计神经网络的时候,选择激活函数我们就可以放心大胆地选择ReLU,它不仅速度快,而且效果好。...其实深度学习中,模型不是最重要的,尤其是在业界,大家广泛使用的也许并不是最先进最复杂的模型,而是一个经典的简单的模型。比模型更重要的是数据。...四、Softmax Softmax可以看做是对sigmoid的一种推广。我们在做二分类问题的时候,一般都使用sigmoid作为输出层激活函数,因为它的范围在0~1之间。但是如果我们需要进行多分类呢?

    76530
    领券