首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

在使用 .NET Remoting 技术开发跨进程通信时可能遇到的各种异常

在使用 .NET Remoting 开发跨进程应用的时候,你可能会遇到一些异常。...因为这些异常在后验的时候非常简单但在一开始有各种异常烦扰的时候却并不清晰,所以我将这些异常整理到此文中,方便小伙伴们通过搜索引擎查阅。...出现此异常时,说明你获取到了一个远端对象,但是在使用此对象的时候,甚至还没有注册 IPC 端口。...System.Runtime.Remoting.RemotingException:“找不到请求的服务” 或者英文版: System.Runtime.Remoting.RemotingException: Requested Service not found 当出现此异常时...本作品采用 知识共享署名-非商业性使用-相同方式共享 4.0 国际许可协议 进行许可。

57420

6道经典大数据面试题(ChatGPT回答版)

数据管理:内部表是由 Hive 管理的,当删除内部表时,表的元数据和数据都会被删除。而外部表是由用户管理的,当删除外部表时,只会删除元数据,而不会删除数据。...如果数据需要在多个应用程序或工具之间共享,并且需要由用户自行管理,则应该使用外部表。 5、Flink 相比 Spark Streaming 有什么区别?...它们之间的区别如下: 数据处理模型:Flink 和 Spark Streaming 采用不同的数据处理模型。Flink 采用基于事件驱动的模型,它将数据流看作事件序列,并在事件到达时立即处理。...而 Spark Streaming 使用 Spark 的任务调度器,调度器仅仅会考虑 CPU 和内存资源,无法考虑网络带宽等其他因素。...如果需要实现低延迟、高吞吐量的实时数据处理,可以考虑使用 Flink;如果需要对大规模数据进行批量处理,可以考虑使用 Spark Streaming。 6、星型模型和雪花模型的区别是什么?

1.4K60
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    助力工业物联网,工业大数据之数仓维度层DWS层构建【十二】

    ColumnMeta:列名、列的注释、列的类型、长度、精度 如何使用Python构建Oracle和Hive的连接?...SparkSQL:pyHive SparkSQL用法 编程方式:python文件 | jar包 流程 step1:SparkSession step2:读取数据源...step2:星型模型 step3:星座模型 实施 雪花模型 设计:部分维度通过其他维度间接关联事实表 优点:避免数据的冗余 缺点:关联层次比较多,数据大的情况下,底层层层Join,查询数据性能降低...星型模型 设计:所有维度表直接关联事实表 优点:每次查询时候,直接获取对应的数据结果,不用关联其他的维度子表,可以提高性能 缺点:数据冗余度相比雪花模型较高 星座模型 星座模型:基于星型模型的演变...,多个事实共同使用一个维度表 小结 掌握维度设计的常用模型

    49910

    如何构建更好的数据立方体系统(Cube)

    存放度量值得表,同时存放了维表得外键,所有分析所用得数据最终都来自事实表 • 维表:对于维度的描述,每个维度对应一个或多个维表,一个维度对应一个表的是星型模式,对应多个表的是雪花模式 ?...多维数据模型的模式主要有星形模式、雪花模式和事实星座模式。 星形模式 它是最常见的模式,它包括一个大的中心表(事实表),包含了大批数据但是不冗余;一组小的附属表(维表),每维一个。...每一维使用一个表表示,表中的属性可能会形成一个层次或格。 ? 雪花模式 它是星模式的变种,将其中某些表规范化,把数据进一步的分解到附加的表中,形状类似雪花。...第一轮读取原始数据(RawData),去掉不相关的列,只保留相关的。...中Cubing的过程 下图DAG,它详细说明了这个过程: 在“Stage 5”中,Kylin使用HiveContext读取中间Hive表,然后执行一个一对一映射的“map”操作将原始值编码为KV字节。

    4.4K40

    Apache Hudi与Hive集成手册

    Hudi表对应的Hive外部表介绍 Hudi源表对应一份HDFS数据,可以通过Spark,Flink 组件或者Hudi客户端将Hudi表的数据映射为Hive外部表,基于该外部表, Hive可以方便的进行实时视图...查询Hudi表对应的Hive外部表 4.1 操作前提 使用Hive查询Hudi表前,需要通过set命令设置hive.input.format,否则会出现数据重复,查询异常等错误,如下面这个报错就是典型的没有设置...提交次数,如设置为3时,代表增量查询从指定的起始时间之后commit 3次的数据,设为-1时,增量查询从指定的起始时间之后提交的所有数据 4.2 COW类型Hudi表的查询 例如Hudi原表表名为hudicow...•MOR表的实时视图读取 请按需设置mapreduce.input.fileinputformat.split.maxsize的大小 禁止hive取切分读取的文件,否则会出现数据重复。...•如果碰到classNotFound, noSuchMethod等错误请检查hive lib库下面的jar包是否出现冲突。 5.

    1.7K31

    助力工业物联网,工业大数据之分层总体设计【六】

    查看日志:tail -100f logs/xxxxxxxx.log 分析错误 ArrayoutofIndex NullException ClassNotFound 自己先尝试解决 如果解决不了...清晰数据结构:每一个数据分层都有它的作用域,这样我们在使用表的时候能更方便地定位和理解。...数据血缘追踪:简单来讲可以这样理解,我们最终给业务诚信的是一能直接使用的张业务表,但是它的来源有很多,如果有一张来源表出问题了,我们希望能够快速准确地定位到问题,并清楚它的危害范围。...屏蔽原始数据的异常对业务的影响:不必改一次业务就需要重新接入数据 怎么分层?...维度设计模型 雪花模型:维度表拥有子维度表,部分维度表关联在维度表中,间接的关联事实表 星型模型/星座模型:维度表没有子维度,直接关联在事实表上,星座模型中有多个事实 上卷与下钻

    54020

    对于一般大数据物流项目的面试题(问题+答案)

    DataSet是DataFrame API的一个扩展,是Spark最新的数据抽象,结合了RDD和DataFrame的优点 RDD 特性有哪些??你是如何理解RDD的???...RDD是分布式弹性数据集, 为什么Spark计算比较快,与MapReduce相比较优势是什么?? 基于内存计算 SparkSQL中优化有哪些???使用常见函数有哪些???...雪花模型和星型模型区别是什么????...雪花模型和星型模型区别在于是否围绕事实表,星型模型是一个事实表为中心,多个维度表环绕周围,雪花模型是它的延伸 9、ClickHouse 为什么选择,有哪些优势??...查询速度超快 适合业务场景 10、SparkSQL外部数据源实现(难点) Kudu +ES +Ck 12、业务线:你完成什么,你做了什么,你遇到什么问题,你是如何解决的????

    35431

    重磅 | Apache Spark 社区期待的 Delta Lake 开源了

    Delta Lake 还提供强大的可序列化隔离级别,允许工程师持续写入目录或表,并允许消费者继续从同一目录或表中读取。读者将看到阅读开始时存在的最新快照。...这允许 Delta Lake 在恒定时间内列出大型目录中的文件,同时在读取数据时非常高效。 数据版本 Delta Lake 允许用户读取表或目录之前的快照。...当用户想要读取旧版本的表或目录时,他们可以在 Apache Spark 的读取 API 中提供时间戳或版本号,Delta Lake 根据事务日志中的信息构建该时间戳或版本的完整快照。...由于 Delta Lake 以文件级粒度跟踪和修改数据,因此它比读取和覆盖整个分区或表更有效。 数据异常处理 Delta Lake 还将支持新的 API 来设置表或目录的数据异常。...工程师能够设置一个布尔条件并调整报警阈值以处理数据异常。当 Apache Spark 作业写入表或目录时,Delta Lake 将自动验证记录,当数据存在异常时,它将根据提供的设置来处理记录。

    1.5K30

    Spark离线导出Mysql数据优化之路

    机器性能要求高:表读取是一个SQL查出所有数据,在单表数据量比较大时,需要大内存来承载这些数据;同时这些数据需要写入本地文件,若写入处理速度较慢,会导致查询执行失败(受mysql net_read_timeout...运维困难:每次新增一个数据源的同步,都要复制一份shell,然后改里面的库表信息、查询语句;要新增一些优化逻辑,需要每个脚本都改一遍;shell脚本在日常业务开发中使用不多,实现逻辑、定位问题都很不方便...当SplitPK是字符串的时,区间划分的逻辑相对复杂,且对于主键是随机字符串的场景(如雪花算法生成主键),主键分布不均匀的问题会更严重。...JDBC本身提供了并发读取数据表的方式[3],可以直接把划分好的区间转换成查询条件传入JDBC接口中,Spark就为每一个区间生成一个SQL查询,并发执行。...利用Spark分布式的能力提升任务执行速度。 3. Spark SQL功能强大,可以在数据读取的同时,通过配置做一些简单的ETL操作。

    2.7K101

    Dive into Delta Lake | Delta Lake 尝鲜

    这使得 Delta Lake 能够在固定的时间内列出大型目录中的文件,并且在读取数据时非常高效。 数据版本 Delta Lake 允许用户读取表或目录之前的快照。...当用户想要读取旧版本的表或目录时,他们可以在 Apache Spark 的读取 API 中提供时间戳或版本号,Delta Lake 根据事务日志中的信息构建该时间戳或版本的完整快照。...由于 Delta Lake 以文件级粒度跟踪和修改数据,因此它比读取和覆盖整个分区或表更有效。 数据异常处理 Delta Lake 还将支持新的 API 来设置表或目录的数据异常。...工程师能够设置一个布尔条件并调整报警阈值以处理数据异常。当 Apache Spark 作业写入表或目录时,Delta Lake 将自动验证记录,当数据存在异常时,它将根据提供的设置来处理记录。...使用模式 overwrite 覆盖表而不使用 replaceWhere 时,可能仍希望覆盖正在写入的数据的 schema。

    1.1K10

    Spark SQL在雪球的实践

    不过,雪球数据团队在测试和切换过程中,遇到一些问题,其中大部分都是兼容性问题,下面进行逐一介绍: Spark SQL无法递归子目录以及无法读写自己的问题 当Hive表数据存放在多级子目录时,Tez、MR...、Spark默认均不能识别和读取到数据。...此外,当用户在使用Spark读写同一张Hive表时,经常会遇到 “Cannot overwrite a path that is also being read from “的报错,而同样的语句在Hive...Hive ORC解析的一些问题 在1 问题的解决方案中,我们选择统一使用Hive的ORC解析器,这将带来以下问题: Hive的ORC在读取某些Hive表时,会出现数组越界异常或空指针异常。...这是因为Spark在读写存在该属性的Hive表时,会优先使用该属性提供的映射值来生成表结构。而Hive原生修改表结构的语句不会更新该值,最终导致新字段在读写时不被Spark识别。

    3.1K20

    Apache Kylin 历险记

    1.3.10 雪花模型 当有一个或多个维表没有直接连接到事实表上,而是通过其他维度表连接到事实表上时,其图解就像多个雪花连接在一起,故称雪花模型。该模型在MySQL、Oracle中常见。...2.3 Kylin 入手 2.3.1 Kylin 安装 Kylin 是依赖于Hadoop、HBase、Zookeeper、Spark的,所以安装时需确保所有的前置依赖是OK的。...创建模型时整体有点类似PowerBI,需要选择表Join的方式跟字段,选择事实表跟维度的指标跟维度。...Cube 构建优化 3.1 使用衍生维度 衍生维度用于在有效维度内将维度表上的非主键维度排除掉,并使用维度表的主键(其 实是事实表上相应的外键)来替代它们。...Kylin 会在底层记录维度表主键与维度表其他维度之间的映射关系,以便在查询时能够动态地将维度表的主键“翻译”成这些非主键维度,并进行实时聚合,(一般不建议开,可能会导致查询耗时变大)。

    60030

    Spark调优 | Spark SQL参数调优

    本文讲解最近关于在参与hive往spark迁移过程中遇到的一些参数相关问题的调优。 内容分为两部分,第一部分讲遇到异常,从而需要通过设置参数来解决的调优;第二部分讲用于提升性能而进行的调优。...在spark中,如果使用using parquet的形式创建表,则创建的是spark 的DataSource表;而如果使用stored as parquet则创建的是hive表。...但是有时候当其设置为true时,会出现使用hive查询表有数据,而使用spark查询为空的情况....hive-metastore使用的元数据进行读取数据,而如果此表是使用spark sql DataSource创建的parquet表,其数据类型可能出现不一致的情况,例如通过metaStore读取到的是...在进行spark DataSource 表查询时候,可能会遇到非分区表中的文件缺失/corrupt 或者分区表分区路径下的文件缺失/corrupt 异常,这时候加这两个参数会忽略这两个异常,这两个参数默认都是

    7.7K63

    新能源车企上岸面经,题目简单我也会!

    100次的用户 第二轮 1.介绍项目,项目中的重点难点 2.数仓建模理论 3.冷热数据如何处理 4.数据治理从哪几个方面进行 5.数据质量的衡量标准,数据质量的效果,如何验收,项目流程 6.用的星型还是雪花模型...第三轮 1.介绍项目,项目中的重点难点 2.linux命令 查找文件,awk命令 3.kafka分区,ack机制 4.spark的执行原理 5.解析下spark的DAG 6.mr的执行原理 7.大小表join...的优化 8.Spark常用算子reduceByKey与groupByKey的区别,哪一种更具优势?...9.Spark任务执行模式,提交任务,资源也够的情况下,还是不能跑,啥原因 10.spark和MR的区别 第四轮 1.介绍项目,项目中的重点难点 2.项目中遇到啥问题 3.kafka丢失数据,怎么解决...对比 第五轮 1.介绍项目,项目中的重点难点 2.数据中台oneid,oneservice 3.遇到啥问题,项目进度把控,资源协调 4.数据的安全,权限的管理 5.数仓重构,数仓模型的建设,遇到啥问题

    34821

    实时湖仓一体规模化实践:腾讯广告日志平台

    1.2 问题和不足 随着广告业务的发展,广告日志量逐渐增大,日志使用方逐渐增多,现有的方案遇到了如下问题: 日志种类多,从时效性上看有分钟级/小时级,日志的格式除了 dragon,分钟级和小时级的存储格式也不相同...B、Spark 入湖任务,读取1小时的 HDFS 分钟级日志 + ETL + 入湖。任务入湖采用 overwrite 模式,一次写入一个小时的完整数据,保证任务的幂等性。...下游各个使用方基于数据湖表,可以方便的通过 SQL/Spark 来读取数据,无需关心数据的存储位置和格式,大大简化日志的使用。...; B、广告日志数据量大,实时写入数据湖的方案难度和风险比较大,实时写入的性能和稳定性都是未知的,如何保证数据不重不漏,如何在任务重启(任务异常,发布重启)时保证数据不重不漏,如何变更 Iceberg...,基于 Flink Checkpoint 机制,可以做到 exactly-once,任务异常和重启时都能保证数据的准确性和实效性。

    1.2K30

    硬核!Apache Hudi Schema演变深度分析与应用

    0.11版本的写入升级到该版本,已经正在更新的hudi表,无法使用该功能。...LogFileIterator类及其子类中使用HoodieMergeOnReadRDD的scanLog方法 scanLog中创建HoodieMergedLogRecordScanner,创建时执行performScan...6.3 Presto遇到的问题 由于Presto同样使用hive的元数据,330的presto遇到的问题和hive遇到的问题一致,查询rt表仍为查询ro表 trino-360 和 presto275 使用某个...patch支持查询rt表后,查询ro表问题如下: 操作类型 是否支持 原因 新增列 否 按顺序查询基础文件,导致串列,新增列在ts列之前可能抛出异常 删除列 否 按顺序查询基础文件,导致串列,因为ts类型很可能抛出异常...原因大致为:这些版本中查询hudi表,读取parquet文件中数据时按顺序和查询schema对应,而非使用parquet文件自身携带的schema去对应 查询rt表如下: 操作类型 是否支持 原因 新增列

    1.4K30

    Delta Lake为什么不存在Hive覆盖写的问题

    当你使用Spark对hive表进行Overwrite的时候,基本流程是删除metastore的表信息,删除数据,写_temp目录,移动_temp目录数据,最后写入表信息(我描述的这个流程不一定完全对,熟悉...这个过程可能很漫长,比如我们就遇到了当时spark进程正在写_temp目录数据,结果就这个时候Spark被异常杀死。...当Spark进程启动后再次尝试时,就会报错: Can not create the managed table('`test`.`test`')....所以commit失败了(比如没commit或者commit期间程序异常被杀),那么依然不影响读。当程序再次启动运行的时候,程序看到的依然是老版本10,这个时候他会重新进行之前的覆盖操作。...你可能会问,如果事变了,那那些准备好的数据在哪呢,不会被读取么?答案是他们变成了孤儿数据,相当于没有指针再指向了(Delta Log里没有他们的记录),可以回收掉了。

    31310

    Tomcat如何打破双亲委托机制?

    我们经常会遇到ClassNotFound异常,表明JVM在尝试加载某类时失败了。...要解决这个异常,你得知道 什么是类加载 JVM如何加载类 为什么会出现ClassNotFound 想想Tomcat又是如何加载和管理Web应用下的Servlet呢?...JVM并非在启动时就把所有 .class 文件都加载一遍,而是程序在运行过程中用到该类才去加载。...上述过程都加载失败,抛出异常 throw new ClassNotFoundException(name); } 工作流程 先在本地Cache查找该类是否已加载过 即Tomcat的类加载器是否已经加载过这个类...若上述加载过程都失败,抛ClassNotFound 可见 Tomcat 类加载器打破了双亲委托,没有一上来就直接委托给父加载器,而是先在本地目录下加载。

    42320
    领券