参数: x: 张量或稀疏张量 name: 操作的名称(可选)。...返回值: 一种形状与x相同的张量或稀疏张量,类型为int32 可能产生的异常: TypeError: If x cannot be cast to the int32. 2、tf.to_float()...将张量强制转换为float32类型。...tf.to_float( x, name='ToFloat' ) 参数: x:张量或稀疏张量或索引切片。 name:操作的名称(可选)。...返回值: 一种形状与x相同的张量或稀疏张量或索引切片,类型为float32。 可能产生的异常: TypeError: If x cannot be cast to the float32.
张量的创建 张量(Tensors)类似于NumPy的ndarrays ,但张量可以在GPU上进行计算。从本质上来说,PyTorch是一个处理张量的库。一个张量是一个数字、向量、矩阵或任何n维数组。...layout=torch.strided, device=None, requires_grad=False) 功能:依size创建全0张量 size: 张量的形状 out: 输出的张量 layout...0张量 input: 创建与input同形状的全0张量 dtype: 数据类型 layout: 内存中布局形式 input = torch.empty(2, 3) torch.zeros_like...torch.full_like(input, dtype=None, layout=torch.strided, device=None, requires_grad=False) 功能: 依input形状创建指定数据的张量..., device=None, requires_grad=False) 功能:创建等差的1维张量 start: 数列起始值 end: 数列结束值 step: 数列公差,默认为1 torch.arange
创建指定类型的张量 def test03(): # 前面创建的张量都是使用默认类型或者元素类型 # 创建一个 int32 类型的张量 data = torch.IntTensor...运算符 @ 用于进行两个矩阵的点乘运算 torch.mm 用于进行两个矩阵点乘运算, 要求输入的矩阵为2维 torch.bmm 用于批量进行矩阵点乘运算, 要求输入的矩阵为3维 torch.matmul...将张量移动到 GPU 上有两种方法: 使用 cuda 方法 直接在 GPU 上创建张量 使用 to 方法指定设备 import torch # 1....点积运算: 运算符 @ 用于进行两个矩阵的点乘运算 torch.mm 用于进行两个矩阵点乘运算, 要求输入的矩阵为2维 torch.bmm 用于批量进行矩阵点乘运算, 要求输入的矩阵为...上创建张量、使用 to 方法指定设备
张量的操作主要包括张量的结构操作和张量的数学运算。 张量结构操作诸如:张量创建,索引切片,维度变换,合并分割。 张量数学运算主要有:标量运算,向量运算,矩阵运算。另外我们会介绍张量运算的广播机制。...本篇我们介绍张量的结构操作。 一,创建张量 张量创建的许多方法和numpy中创建array的方法很像。...对于提取张量的连续子区域,也可以使用tf.slice. 此外,对于不规则的切片提取,可以使用tf.gather, tf.gather_nd, tf.boolean_mask。...如果要通过修改张量的某些元素得到新的张量,可以使用tf.where,tf.scatter_nd。...如果要通过修改张量的部分元素值得到新的张量,可以使用tf.where和tf.scatter_nd。 tf.where可以理解为if的张量版本,此外它还可以用于找到满足条件的所有元素的位置坐标。
pytorch和tensorflow的爱恨情仇之基本数据类型:https://www.cnblogs.com/xiximayou/p/13759451.html pytorch版本:1.6.0 tensorflow...这里有两种张量,一种是直接通过toch.Tensor()建立的,另一种是 Variable()建立的,它们的区别是:在新版本的torch中可以直接使用tensor而不需要使用Variable。...2、tensorflow中的张量 在tensorflow中,可以通过tf.consatnt()和tf.Variable()来建立张量,与pytorch旧版本类似的是,tf.constant()对应torch.Tensor...(),tf.Variable()对应torch.Variable(),tf.constant创建的是常数,tf....Variable创建的是变量。变量属于可训练参数,在训练过程中其值会持续变化,也可以人工重新赋值,而常数的值自创建起就无法改变。 ?
请允许我引用官网上的这段话来介绍TensorFlow。 TensorFlow™ 是一个采用数据流图(data flow graphs),用于数值计算的开源软件库。...节点(Nodes)在图中表示数学操作,图中的线(edges)则表示在节点间相互联系的多维数据数组,即张量(tensor)。...简单范例 使用TensorFlow的基本步骤一般为:定义计算图,执行计算图,查看计算图(可选)。...二 张量数据结构 TensorFlow的数据结构是张量Tensor。Tensor即多维数组。Tensor和numpy中的ndarray很类似。...1,Tensor的维度 rank 标量为0维张量,向量为1维张量,矩阵为2维张量。 彩色图像有rgb三个通道,可以表示为3维张量。 视频还有时间维,可以表示为4维张量。 ? ?
张量的操作主要包括张量的结构操作和张量的数学运算。 张量结构操作诸如:张量创建,索引切片,维度变换,合并分割。 张量数学运算主要有:标量运算,向量运算,矩阵运算。另外我们会介绍张量运算的广播机制。...的广播规则和numpy是一样的: 1、如果张量的维度不同,将维度较小的张量进行扩展,直到两个张量的维度都一样。...2、如果两个张量在某个维度上的长度是相同的,或者其中一个张量在该维度上的长度为1,那么我们就说这两个张量在该维度上是相容的。 3、如果两个张量在所有维度上都是相容的,它们就能使用广播。...4、广播之后,每个维度的长度将取两个张量在该维度长度的较大值。 5、在任何一个维度上,如果一个张量的长度为1,另一个张量长度大于1,那么在该维度上,就好像是对第一个张量进行了复制。...tf.broadcast_to 以显式的方式按照广播机制扩展张量的维度。
本文,将总结一下最近使用tensorflow中遇到的两个小需求:张量排序和字符串拼接,咱们一起来学习一下,嘻嘻!...1、张量排序 tensorflow是没有类似于python中sorted或者np.sort方法的,如果在流中使用这两个方法,是会报错的!那么我们如果想要在graph中实现对张量的排序,该如何做呢!...tf.string_join tf.string_join( inputs, separator='', name=None ) 该方法将给定的字符串张量列表中的字符串连接成一个张量...不过这并不是我们想要的答案,如果想要按行进行拼接,应该使用reduce_join函数。...separator:可选的string。默认为""。加入时要使用的分隔符。
(vec_b.size()) torch.Size([3]) >>> print(vec_b) tensor([2, 2, 2]) >>> # 创建采样自[0, 10)均匀分布的2D张量 >>> mat_c...[low, high) 均匀分布的 0D 张量、1D 张量和 2D 张量,创建 nD 张量与之类似,这里不再赘述。...>>> import torch >>> # 创建采样自均值0.标准差1.正态分布的2D张量 >>> # 等价torch.normal(mean = torch.full([2, 2], 0.) >>>...[0, 1)均匀分布的2D张量 >>> # !...比如创建一个采样自 [2, 10) 范围均匀分布且形状为 [2, 2] 的 2D 张量。
,默认(dtype = None)使用全局默认的数据类型,我们可以使用 torch.get_default_tensor_type() 获取全局默认的数据类型,同时可以通过 torch.set_default_tensor_type...In[3]: # 创建全为0或1的2D张量(矩阵) mat_zero = torch.zeros([2, 2]) mat_one = torch.ones([2, 2])...通过 torch.zeros(*size) 和 torch.ones(*size) 函数创建了元素值全为 0 和全为 1 的 0D 张量、1D 张量和 2D 张量,创建 nD 张量与之类似,这里不再赘述...比如: 创建 0D 张量只需要指定 size = []; 创建 1D 张量只需要指定 size = [dim0],其中 dim0 为第 0 个维度的元素个数; 创建 2D 张量只需要指定 size =...([], 5) # 创建1D且元素值为5的张量 vec_a = torch.full([3], 5) # 创建2D且元素值为5的张量 mat_a
本期继续介绍pytorch中,tensor的建立方法。 使用rand函数进行tensor初始化: rand函数会随机产生0~1之间的数值(不包括1)。...在pytorch中使用torch.rand(d1, d2)来建立tensor # torch.rand(d1, d2) a = torch.rand(3, 3) print(a) 输出 tensor([...[0.2509, 0.6947, 0.8994], [0.9532, 0.8325, 0.1682], [0.3213, 0.0603, 0.1677]]) 若使用rand_like...当然想生成一维张量时, a = torch.full([1], 2) print(a) tensor([2.])...9]) 想每隔一段间距输出时,改API为:torch.arange(min, max, a) a = torch.arange(1, 9, 3) print(a) tensor([1, 4, 7]) 创建等分数列
张量是pytorch神经网络的血液,没有血液的流通就没有整个pytorch躯体的运转。...张量。...因此当使用这种方法时,新数据要覆盖之前的旧数据,以免会造成Nan(not a number)的错误。...注意:以维度创建张量的torch.Tensor包含了torch.FloatTensor和torch.IntTensor两种,当以torch.Tensor创建数据时,默认为FloatTensor类型创建(...但在实际使用时可以更改默认创建参数为 # 当想改变默认创建类型时,使用set参数 torch.set_default_tensor_type(torch.DoubleTensor) a = torch.tensor
原文:Tensorflow - tfrecords 文件的创建 - AIUAI 这里主要提供了 Tensorflow 创建 tfrecords...文件的辅助函数,以用于图像分类、检测和关键点定位. 1. tfrecords 的创建 create_tfrecords.py: from __future__ import absolute_import...注: 表中很多 fields 的值可以为空. 大部分场景下只需要使用 fields 中的一部分. 边界框的坐标、关键点(parts)坐标、面积(areas) 需要进行归一化....对于边界框坐标和关键点坐标,x 值除以图片的 width,y 值除以图片的 height. 确保了像素位置可以在原始图片的任何不同尺寸版本(固定长宽比)进行恢复. 面积除以图像面积进行归一化....所有的像素位置都是相对于该原点. 3. tfrecords 创建例示 create_tfrecords.py 可以很方面的用于生成 tfrecords 文件.
上一篇我介绍了Tensorflow是符号操作运算,并结合例子来验证。这一篇我也会结合一些例子来深刻理解Tensorflow中张量的静态和动态特性。...1、Tensorflow张量的静态和动态相关操作 TensorFlow中的张量具有静态大小属性,该属性在图形构建期间确定。有时静态大小可能没有指定。...可以使用tf.reshape函数动态重塑给定的张量: ? 2、返回张量大小的通用函数 我们定义这么一个函数,它可以很方便地返回可用的静态大小,当不可用时则返回动态大小。...以下get_shap()函数可以做到这一点: ? 在实际很多情况中,我们需要将张量的不同维度通道进行合并,比如我们想要将第二维和第三维进行合并,也就是将三维张量转换为二维张量。...我们可以使用上面定义好的get_shape()函数来做到这一点: ? 无论这些大小是否为静态指定,这都是有效的。 3、通用重塑函数 实际上,我们可以编写一个通用重塑函数来折叠任何维度列表: ?
张量和PyTorch张量之间的抽象概念的区别在于PyTorch张量给了我们一个具体的实现,我们可以在代码中使用它。 ?...在上一篇文章中《Pytorch中张量讲解 | Pytorch系列(四)》,我们了解了如何使用Python列表、序列和NumPy ndarrays等数据在PyTorch中创建张量。...,并为我们的张量创建需求提出一个最佳的选择。...这是torch.Tensor() 构造函数缺少配置选项的示例。这也是使用 torch.tensor() 工厂函数创建张量的原因之一。 让我们看一下这些替代创建方法之间的最后隐藏的区别。...三、共享内存以提高性能:复制与共享 第三个区别是隐藏的区别。为了揭示差异,我们需要在使用ndarray创建张量之后,对numpy.ndarray中的原始输入数据进行更改。
本文是对tensorflow官方入门教程的学习和翻译,展示了创建一个基础的神经网络模型来解决图像分类问题的过程。具体步骤如下 1....训练模型 使用训练集训练模型,代码如下 >>> model.fit(train_images, train_labels, epochs=10) 2021-06-16 09:40:47.034516:...使用模型进行预测 为了更好的显示预测结果,在模型的后面添加一层softmax层,表示每个类别对应的概率,代码如下 >>> probability_model = tf.keras.Sequential(...,训练,预测等过程,可以看到,通过tensorflow的API可以简单快速的构建一个神经网络模型。...·end· —如果喜欢,快分享给你的朋友们吧— 原创不易,欢迎收藏,点赞,转发!生信知识浩瀚如海,在生信学习的道路上,让我们一起并肩作战!
语句结构:tf.zeros(shape,dtype=tf.float32,name=None)举例:tf.zeros([3, 4], tf.int32)最主要的是,shape可以接收1D张量。
在这里,我们选择属于某个特定域的图像。如果我们选择的数据集中有更广泛图像,我们的模型将不能很好地执行。因此,我们将其限制在一个域内。 使用wget下载我在GitHub上托管的数据 !...unzip images.zip 为了生成训练数据,我们将遍历数据集中的每个图像,并对其执行以下任务, ? 首先,我们将使用PIL.Image.open()读取图像文件。...使用np.asarray()将这个图像对象转换为一个NumPy数组。 确定窗口大小。这是正方形的边长这是从原始图像中得到的。...这些跳过连接提供了更好的上采样。通过使用最大池层,许多空间信息会在编码过程中丢失。为了从它的潜在表示(由编码器产生)重建图像,我们添加了跳过连接,它将信息从编码器带到解码器。...这里我们只是用了一个简单的模型来作为样例,如果我们要推广到现实生活中,就需要使用更大的数据集和更深的网络,例如可以使用现有的sota模型,加上imagenet的图片进行训练。
后来 IBM 用 Hidden Markov Model 来预测每个点最大概率可能表示的文字。 ? ?...Yours ~~ 像 Siri,Google 一样,现在我们来看看怎样用 TensorFlow 创建自己的 Speech Recognizer ,来识别数字吧。...导入库 需要用到 tflearn,这是建立在 TensorFlow 上的高级的库,可以很方便地建立网络。 还会用到辅助的类 speech_data,用来下载数据并且做一些预处理。...导入数据 用 speech_data.mfcc_batch_generator 获取语音数据并处理成批次,然后创建 training 和 testing 数据。...通常的 RNN ,它的输出结果是受整个网络的影响的。 ? 而 LSTM 比 RNN 好的地方是,它能记住并且控制影响的点。所以这里我们用 LSTM。 ?
领取专属 10元无门槛券
手把手带您无忧上云