首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

教程 | 5种快速易用的Python Matplotlib数据可视化方法

如下图所示,我们可以看到,所有专业课程的相对百分数随年代的变化的幅度都很大。用散点图来画这些数据将变得非常杂乱无章,而难以看清其本质。线图非常适合这种情况,因为它可以快速地总结出两个变量的协方差。...使用箱体(离散化)确实能帮助我们观察到「更完整的图像」,因为使用所有数据点而不采用离散化会观察不到近似的数据分布,可能在可视化中存在许多噪声,使其只能近似地而不能描述真正的数据分布。 ?...但实际上 Matplotlib 有更好的方法,我们可以用不同的透明度叠加多个直方图。...如下图所示,均匀分布设置透明度为 0.5,因此我们就能将其叠加在高斯分布上,这允许用户在同一图表上绘制并比较两个分布。 ? 叠加直方图 在叠加直方图的代码中,我们需要注意几个问题。...我们可能需要清晰地可视化标准差,也可能出现中位数和平均值差值很大的情况(有很多异常值),因此需要更细致的信息。还可能出现数据分布非常不均匀的情况等等。 箱线图可以给我们以上需要的所有信息。

2.4K60

5 种快速易用的 Python Matplotlib 数据可视化方法

如下图所示,我们可以看到,所有专业课程的相对百分数随年代的变化的幅度都很大。用散点图来画这些数据将变得非常杂乱无章,而难以看清其本质。线图非常适合这种情况,因为它可以快速地总结出两个变量的协方差。...使用箱体(离散化)确实能帮助我们观察到「更完整的图像」,因为使用所有数据点而不采用离散化会观察不到近似的数据分布,可能在可视化中存在许多噪声,使其只能近似地而不能描述真正的数据分布。...但实际上 Matplotlib 有更好的方法,我们可以用不同的透明度叠加多个直方图。...如下图所示,均匀分布设置透明度为 0.5,因此我们就能将其叠加在高斯分布上,这允许用户在同一图表上绘制并比较两个分布。 叠加直方图 在叠加直方图的代码中,我们需要注意几个问题。...我们可能需要清晰地可视化标准差,也可能出现中位数和平均值差值很大的情况(有很多异常值),因此需要更细致的信息。还可能出现数据分布非常不均匀的情况等等。 箱线图可以给我们以上需要的所有信息。

2K40
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    Matplotlib入门

    https://matplotlib.org/gallery/index.html 线性图 前面的例子中,线性图的横轴的点都是自动生成的,而我们很可能希望主动设置它。...c='r',s=100,alpha=0.5) # c:点的颜色 s:点的大小 alpha:点的透明度 plt.scatter(np.random.rand(N)*100,...image.png 条形图 bar函数用来绘制条形图。条形图常常用来描述一组数据的对比情况,例如:一周七天,每天的城市车流量。...3000个随机数,这些随机数的范围是 [0, 3000) 第二个数组包含了4000个随机数,这些随机数的范围是 [0, 4000) 第三个数组包含了5000个随机数,这些随机数的范围是 [0, 5000...) bins数组用来指定我们显示的直方图的边界,即:[0, 100) 会有一个数据点,[100, 500)会有一个数据点,以此类推。

    1.3K90

    为什么你觉得Matplotlib用起来很困难?因为你还没看过这个思维导图

    Matplotlib是一个流行的Python库,可以很容易地用于创建数据可视化。然而,设置数据、参数、图形和绘图在每次执行新项目时都可能变得非常混乱和繁琐。...让我们看看下面的图来说明。我们可以清楚地看到,所有专业的百分比随时间变化很大。用散点图来绘制这些图会非常杂乱,很难真正理解和看到发生了什么。...直方图 直方图对于查看(或真正发现)数据点的分布很有用。看看下面的柱状图,我们绘制了频率和智商的柱状图。我们可以清楚地看到向中心的浓度和中值是什么。我们也可以看到它遵循一个高斯分布。...使用箱子(离散化)真的帮助我们看到“更大的画面”,如果我们使用所有没有离散箱子的数据点,在可视化中可能会有很多噪音,使我们很难看到到底发生了什么。 ? 假设我们要比较数据中两个变量的分布。...有人可能会认为,你必须制作两个独立的直方图,把它们放在一起比较。但是,实际上有一个更好的方法:我们可以用不同的透明度覆盖直方图。看看下面的图。均匀分布的透明度设为0。5这样我们就能看到它的背后。

    1.4K32

    有这5小段代码在手,轻松实现数据可视化(Python+Matplotlib)

    我们还可以设置点的大小、颜色和alpha透明度,甚至将y轴设置成对数坐标。最后再为该图设置好必要的标题和轴标签。这个函数轻松地实现了端到端的绘图!...而且,分组(使数据离散化)有助于看出“更宏观的分布”,若使用未被离散化的数据点,可能会产生大量数据噪声,从而很难看出数据的真实分布。 正态分布的IQ 下面是用Matplotlib库创建直方图的代码。...一方面,更多的分组数能提供更详细的信息,但可能会引入数据噪声使结果偏离宏观分布;另一方面,更少的分组数能提供更宏观的数据“鸟瞰”,在不需要太多细节的情况下能更全面地了解数据整体情况。...有些人可能会认为,必须要制作两个独立的直方图将它们并排放在一起进行比较。但实际上,有更好的方法:用不同透明度实现直方图的叠加。比如下图,将均匀分布透明度设置为0.5,以便看清后面的正态分布。...这里,箱线图就可以表示出上述的所有信息。箱体的底部和顶部分别为第一和第三四分位数(即数据的25%和75%),箱体内的横线为第二四分位数(即中位数)。箱体上下的延伸线(即T型虚线)表示数据的上下限。

    1.3K60

    这5小段代码轻松实现数据可视化(Python+Matplotlib)

    我们还可以设置点的大小、颜色和alpha透明度,甚至将y轴设置成对数坐标。最后再为该图设置好必要的标题和轴标签。这个函数轻松地实现了端到端的绘图!...而且,分组(使数据离散化)有助于看出“更宏观的分布”,若使用未被离散化的数据点,可能会产生大量数据噪声,从而很难看出数据的真实分布。 ?...一方面,更多的分组数能提供更详细的信息,但可能会引入数据噪声使结果偏离宏观分布;另一方面,更少的分组数能提供更宏观的数据“鸟瞰”,在不需要太多细节的情况下能更全面地了解数据整体情况。...有些人可能会认为,必须要制作两个独立的直方图将它们并排放在一起进行比较。但实际上,有更好的方法:用不同透明度实现直方图的叠加。比如下图,将均匀分布透明度设置为0.5,以便看清后面的正态分布。...这里,箱线图就可以表示出上述的所有信息。箱体的底部和顶部分别为第一和第三四分位数(即数据的25%和75%),箱体内的横线为第二四分位数(即中位数)。箱体上下的延伸线(即T型虚线)表示数据的上下限。

    97630

    5个快速而简单的数据可视化方法和Python代码

    创建可视化确实有助于使事情更清晰和更容易理解,特别是对于更大的、高维的数据集。...让我们看看下面的图来说明。我们可以清楚地看到,随着时间的推移,所有专业的百分比都有很大的变化。用散点图来画这些会非常混乱,很难理解和理解发生了什么。...使用箱子(离散化)真的帮助我们看到“大局”,如果我们使用没有离散箱子的所有数据点,在可视化中可能会有很多噪音,使我们很难看到真正发生了什么。 ?...均匀分布的透明度设为0.5,这样我们就能看到它后面是什么。这允许直接在同一个图上查看这两个分布。 ? 叠加直方图 对于叠加直方图,需要在代码中设置一些东西。首先,我们设置水平范围以适应这两个变量分布。...实线盒的底部和顶部总是第一和第三四分位数(25%和75%的数据),而框内的带始终是第二四分位数(中位数)。虚线加上最后的条,从框中延伸出来显示数据的范围。

    2.1K10

    数据可视化干货:使用pandas和seaborn制作炫酷图表(附代码)

    ▲图9-15 水平柱状图和垂直柱状图 选项color='k'和alpha=0.7将柱子的颜色设置为黑色,并将图像的填充色设置为部分透明。...回到本书之前使用的数据集,假设我们想要绘制一个堆积柱状图,用于展示每个派对在每天的数据点占比。...数据点被分成离散的,均匀间隔的箱,并且绘制每个箱中数据点的数量。...▲图9-22 小费百分比密度图 distplot方法可以绘制直方图和连续密度估计,通过distplot方法seaborn使直方图和密度图的绘制更为简单。...▲图9-24 seaborn回归/散点图 在探索性数据分析中,能够查看一组变量中的所有散点图是有帮助的; 这被称为成对图或散点图矩阵。

    5.4K40

    Python进阶之Matplotlib入门(六)

    概要 1、学会Matplotlib中的散点图功能; 2、学会Matplotlib中的柱状图功能; 散点图 之前的课程里,我们一直在学习如何画线图,现在我们开始介绍其他类型的图,比如: 散点图; 等高线图...normal的意思是正态分布,也就是我们常见的高斯分布。熟悉正态分布的同学肯定会问上面的图为什么看上去非常均匀,其实这和我们用plt.xlim函数以及plt.ylim函数规定坐标轴范围相关。...还有根据点所处的角度不同来改变颜色,所以导致了非常炫酷的效果。最后的重点就是scatter函数,它负责画出散点图,其中参数c是颜色,alpha是透明度。...柱状图 柱状图也叫条形图,是非常直观表达数据的常用图之一,因此我们需要重点关注这个图的画法。 我们先把图展示出来: ?...画柱状图的核心函数是bar,我们把代码展示出来: import matplotlib.pyplot as pltimport numpy as np n = 12X = np.arange(n)Y =

    87710

    原来使用 Pandas 绘制图表也这么惊艳

    Pandas 是一种非常流行的数据分析工具,同时它还为数据可视化提供了很好的选择。 数据可视化是使数据科学项目成功的重要一步——一个有效的可视化图表可以胜过上千文字描述。...,而 alpha 参数指定透明度。...箱线图由三个四分位数和两个虚线组成,它们在一组指标中总结数据:最小值、第一四分位数、中位数、第三四分位数和最大值。...如果我们想将多个饼图中所有列的数据表示为子图,我们可以将 True 分配给 subplots 参数,如下所示: df_3Months.plot(kind='pie', legend=False, autopct...六边形图 当数据非常密集时,六边形 bin 图(也称为 hexbin 图)可以替代散点图。换句话说,当数据点的数量很大,并且每个数据点不能单独绘制时,最好使用这种以蜂窝形式表示数据的绘图。

    4.6K50

    十分钟入门 Python 绘图库 Matplotlib 入门教程

    用户图形界面工具包 使用Matplotlib,能够的轻易生成各种类型的图像,例如:直方图,波谱图,条形图,散点图等。...,每组数据都包含了20个随机坐标的位置 参数c表示点的颜色,s是点的大小,alpha是透明度 这段代码绘制的图形如下所示: ?...scatter函数的详细说明参见这里:matplotlib.pyplot.scatter 饼状图 pie函数用来绘制饼状图。饼状图通常用来表达集合中各个部分的百分比。...[0, 5000) bins数组用来指定我们显示的直方图的边界,即:[0, 100) 会有一个数据点,[100, 500)会有一个数据点,以此类推。...作者:强波的技术博客 来源:qiangbo.space/2018-04-06/matplotlib_l1/ 转载自:Python开发者 *声明:推送内容及图片来源于网络,部分内容会有所改动,版权归原作者所有

    1.1K00

    Python 绘图库 Matplotlib 入门教程

    用户图形界面工具包 使用Matplotlib,能够的轻易生成各种类型的图像,例如:直方图,波谱图,条形图,散点图等。...,每组数据都包含了20个随机坐标的位置 参数c表示点的颜色,s是点的大小,alpha是透明度 这段代码绘制的图形如下所示: ?...scatter函数的详细说明参见这里:matplotlib.pyplot.scatter 饼状图 pie函数用来绘制饼状图。饼状图通常用来表达集合中各个部分的百分比。...[0, 5000) bins数组用来指定我们显示的直方图的边界,即:[0, 100) 会有一个数据点,[100, 500)会有一个数据点,以此类推。...来源:强波的技术博客 qiangbo.space/2018-04-06/matplotlib_l1/ *声明:推送内容及图片来源于网络,部分内容会有所改动,版权归原作者所有,如来源信息有误或侵犯权益

    1K10

    9种统计学图形的matplotlib画法|收藏收藏!

    (0,100,100) # 生成范围在【0~100】之间100个数据 bins = np.arange(0,101,10) # 生成数组[0 10 20 ... 100],里面是间隔为10的十个数...bins:数据集的分隔区间 color:直方图的颜色 alpha:直方图颜色的透明度 直方图与柱形图相似但不同,直方图表示的是离散型数值的区间分布情况;更多关于直方图hist的教程请参考官方文档。...(theta*np.pi,r,c='c',alpha=0.4) # 填充雷达图,课设置颜色与透明度 plt.ylim(0,100) # 设置极坐标轴的范围 plt.title('雷达图') plt.show...) plt.show() 参数说明 绘制误差棒图plt.errorbar(x,y,fmt,yerr,xerr,ecolor,mfc,mec,capthick,capsize) x:数据点的水平位置 y...:数据点的垂直位置 fmt:数据点的标记样式和数据点标记的连接线样式 xerr:x轴方向数据点的误差计算方法 yerr:y轴方向数据误差点的计算方法 ecolor:误差棒的颜色 mfc:数据点的标记颜色

    2.6K20

    Seaborn-让绘图变得有趣

    如果曾经在Python中使用过线图,条形图等图形,那么一定已经遇到了名为matplotlib的库。 尽管matplotlib库非常复杂,但绘图并没有那么精细,也不是任何人发布的首选。...直方图 直方图是显示连续数据点并查看其分布方式的有效方法。可以看到,大多数值位于较低端,较高端或均匀分布。 dist在seaborn情节既产生的直方图,以及基于所述数据图的密度线。...从零延伸到大约250000的黑线是95%的置信区间。内部的黑色粗块是四分位间距,表示所有数据中约有50%位于该范围内。图的宽度基于数据的密度。...可以将其理解为该特定数据集的直方图,其中黑线是x轴,完全平滑并旋转了90度。 热图 相关矩阵可帮助了解所有功能和标签如何相互关联以及相关程度。...带群图的箱形图 箱形图将信息显示在单独的四分位数和中位数中。与swarm图重叠时,数据点会分布在其位置上,因此根本不会重叠。

    3.6K20

    层次聚类算法

    层次聚类是一种构建聚类层次结构的聚类算法。该算法从分配给它们自己的集群的所有数据点开始。然后将两个最近的集群合并到同一个集群中。最后,当只剩下一个集群时,该算法终止。...可以通过观察树状图来选择最能描述不同组的簇数的决定。聚类数的最佳选择是树状图中垂直线的数量,该水平线可以垂直横穿最大距离而不与聚类相交。 1....在聚合法中,每个数据点最初被视为一个单独的簇,然后每次迭代将距离最近的两个簇合并为一个新的簇,直到所有点都合并成一个大簇。...工作原理 使每个数据点成为单点簇→形成N个簇 取距离最近的两个数据点,使之成为一个簇→形成N-1个簇 取最近的两个簇并使它们成为一个簇→形成N-2个簇。 重复第 3 步,直到只剩下一个集群。...最后,我们使用Matplotlib来绘制树形图,其中leaf_rotation和leaf_font_size参数用于调整叶子节点的旋转角度和字体大小。

    1.2K10

    Python 数据可视化之密度散点图 Density Scatter Plot

    密度散点图(Density Scatter Plot),也称为密度点图或核密度估计散点图,是一种数据可视化技术,主要用于展示大量数据点在二维平面上的分布情况。...这与普通散点图相同,这一步骤确定了每个点在图上的位置。 密度估计:对所有数据点应用核密度估计算法。这一步骤是通过在每个数据点周围放置一个“核”,然后对整个数据集覆盖区域内所有核进行求和来完成的。...优化视觉呈现:密度散点图通过采用渐变色或色阶映射等方法,帮助清晰地展示数据,相比传统散点图的混乱和模糊。这样可以更容易区分高密度和低密度区域,使整体呈现更美观、易于理解。...高灵活性的密度散点图支持多种定制选项,比如调整颜色映射、透明度、标记大小等,以适应不同类型和规模的数据集。此外,还可以结合其他类型的可视化技术(比如轮廓线或网格)来增强表达能力。...可视化结果如下所示: ️ 参考链接: 使用 Python 绘制散点密度图(用颜色标识密度) 复现顶刊 RSE 散点密度验证图(附代码)

    2.1K00

    Matplotlib光速入门-从安装到常用实战

    文章目录 简介 安装 实战 画框 线图 散点图 柱状图 饼状图 等高线图 简介 ---- Matplotlib是Python一个强大的绘图库,搭配NumPy库的使用,可以满足绝大部分的绘图需求,各种你能想到的图表基本都支持...本文主要参考Matplotlib文档,归纳总结Matplotlib常用方法,只举例了部分,所有函数和相关参数不能遍举,更多可参考Matplotlib文档。...plt是导入Matplotlib库时的重命名缩写,可以理解为一整张画布,直接添加即可,但细节修改用ax更好。...import numpy as np from matplotlib import pyplot as plt plt.figure(figsize=(10, 5)) # ------均匀分布-----...2, 1000) x3 = np.random.normal(7.5, 1, 1000) plt.hist(x1, bins=100, alpha=0.5, label="A") # 100个数据,透明的

    67220

    Pandas绘图功能

    Pandas中的绘图是在matplotlib之上构建的,如果你很熟悉matplotlib你会惊奇地发现他们的绘图风格是一样的。 本案例用到的数据集是关于钻石的。...为了获得更多细节的数据,我们可以增加分箱的数量来查看更小范围内的钻石重量,通过限制x轴的宽度使整个图形在画布上显得不那么拥挤。...上面的图表显示,透明度较低的钻石往往更大,透明度高的钻石更加小巧。由于尺寸重量是决定钻石价值的另一个重要因素,因此低透明度钻石的中间价较高也就不足为奇了。...散点图 散点图是双变量图,采用两个数值变量,并在x/y平面上绘制数据点。...总结 Python绘图生态系统有许多不同的库,大部分人可能会很难从中抉择,不知道该如何人下手。Pandas绘图函数使你能够快速地可视化和浏览数据。

    1.8K10

    我的Python分析成长之路10

    figure.add_subplot:添加子图,可以指定子图的行数、列数和选中图片的编号。     ...ncols:子图的列数           sharex:所有子图使用相同的x轴刻度           sharey:所有子图使用相同的y轴刻度 1 import numpy as np 2 import...点的大小 4.分析特征间的相互关系 1.柱状图:         plot.bar():绘制垂直方向上的柱状图         plot.barh():绘制水平方向上的柱状图 1 import matplotlib.pyplot...数据被分隔成离散的,均匀间隔的箱,并且绘制每个箱中数据点的数量.一般用横轴表示        数据类型,用纵轴表示数量或者占比。         ..."kde",{“plot_kws”:0.2}) 可以支持在对角线上放置每个变量的直方图或密度估计图     4.折线图     折线图是一种将数据点按照顺序连接起来的图形。

    1K20

    Python 数据可视化入门-使用 Matplotlib 绘制基础与高级图表

    此外,文中通过可视化图表和数据分布的分析,使复杂的概念直观易懂,大大提升了阅读体验和知识吸收效率,堪称大模型研究方向的一篇佳作。...Matplotlib 还提供了很多其他功能和图表类型,可以帮助我们更好地展示数据。3.1 箱线图箱线图用于展示数据分布的统计特性,例如中位数、四分位数和异常值。它特别适用于比较多个数据集的分布情况。...它用于填充两个系列的数据区域,并通过 alpha 参数设置透明度。3.4 雷达图雷达图用于展示多维数据的比较,适合用于展示多个变量的综合表现。例如,我们可以使用雷达图来展示不同产品的性能指标。...直方图: 用于展示数据的分布情况。密度图: 用于展示数据的分布密度。高级图表类型:箱线图: 显示数据的分布特性,如中位数、四分位数和异常值。热力图: 展示矩阵数据的强度或密度。...面积图: 显示多个数据系列的累计值。雷达图: 比较多个变量的综合表现。进阶图表自定义:添加注释: 突出显示特定数据点或趋势。自定义样式: 修改图表的背景色、网格线样式等。

    19620
    领券