首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

【R语言】散点图+直方图+密度曲线(二)

前面给大家介绍 ☞【R绘图】散点图+直方图(密度图) 今天小编给大家介绍第二种方法,绘制散点图,并且在散点图上添加直方图和密度曲线。我们还是使用☞【R绘图】散点图+直方图(密度图)里面使用的数据。...)+ #黑白背景 theme(legend.position="none") #删除图注 p 我们可以得到下面这张散点图 接下来我们在这张图的基础上本别来添加直方图或者密度曲线...添加密度曲线 #在散点图上添加密度曲线 ggExtra::ggMarginal(p, type = "density", #指定添加类型 xparams=list...+密度曲线 #在散点图上添加密度曲线+在散点图上添加histogram ggExtra::ggMarginal(p, type = "densigram", xparams...根据性别分组添加密度曲线 #根据性别分组添加密度曲线 ggExtra::ggMarginal(p, type = "density", xparams=list

1.4K10
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    工具 | R语言数据可视化之数据分布图(直方图、密度曲线、箱线图、等高线、2D密度图)

    数据分布图简介 绘制基本直方图 基于分组的直方图 绘制密度曲线 绘制基本箱线图 往箱线图添加槽口和均值 绘制2D等高线 绘制2D密度图 数据分布图简介 中医上讲看病四诊法为:望闻问切。...绘制基本直方图 本例选用如下测试集: ? 直方图的横轴为绑定变量区间分隔的取值范围,纵轴则表示变量在不同变量区间上的频数。...这里采用一种新的堆积方法:重叠堆积,R语言实现代码如下: ? 运行结果: ? 也可以采用分面的方法,R语言实现代码如下: ? 运行结果: ? 绘制密度曲线 本例选用如下测试集: ?...密度曲线表达的意思和直方图很相似,因此密度曲线的绘制方法和直方图也几乎是相同的。区别仅在于密度曲线的横轴要绑定到连续型变量,另外绘制函数的名字不同。R语言示例代码如下: ? 运行结果: ?...这个函数会给出一个基于数据的二维核密度估计,然后我们可基于这个估计值来判断各样本点的”等高”性。接下来首先给出各数据点及等高线的绘制方法,R语言实现代码如下: ? 运行结果: ?

    2.5K100

    具有张量流的混合密度网络

    我花了几天的时间阅读他们的API和教程,我非常满意这些我所看到的内容。 尽管其他库提供了类似的功能,如GPU计算和符号差异化,但是它API的整洁性和对IPython栈的熟悉使其吸引我使用。...在这篇文章中,我尝试使用TensorFlow来实现经典的混合密度网络(Bishop '94)模型。在之前的博客文章中,我已经实现了MDN 。...我们需要的是一个能够预测每个输入的不同输出值范围的模型。在下一节中,我们实现一个混合密度网络(MDN)来完成这个任务。...混合密度网络 由Christopher Bishop在90年代开发的混合密度网络(MDNs)试图解决这个问题。该方法倾向于让网络预测一个单个的输出值,网络将预测出输出内容的整个概率分布。...Bishop的MDN实现将预测被称为混合高斯分布的一类概率分布,其中输出值被建模为许多高斯随机值的总和,每个高斯随机值都具有不同的均值和标准差。

    2K60

    数据分布图之统计直方图和和核密度估计图

    ggplot2提供的geom_histogram()用于绘制统计直方图 该函数有两个主要参数,binwidth(箱型3宽度)和bins(箱型数量) ggplot2提供的geom_density()用于绘制估计的和密度图...该函数两个主要参数bw(箱型的宽度)和kernel(核函数),核函数默认为高斯函数gaussian其他函数包括:epanechnikov,rectangular,triangular,biweight...,cosina,optcpsine. 1数据构造 统计直方图是对一个变量的统计,所以aex里面的参数是一个变量,不同于以往的x和y,这里我们对MXSPD进行统计 image.png 2绘制统计直方图 ggplot..."),#, legend.position=c(0.8,0.8), legend.background = element_blank() ) image.png 3分开绘制统计直方图...legend.position=c(0.8,0.8), legend.background = element_blank() ) image.png 4绘制估计概率密度图

    1.8K00

    利用Excel绘制超好看的直方图与正态分布曲线

    今天给大家如何利用Excel绘制直方图与正态分布曲线,还是先上几幅不同配色的图来看一下: 作图思路 先对原始的数据进行分割(组),计算每个分组的频数与正态分布后。...然后插入柱形图与折线图,调整柱形的分类间距与折线的平滑度即可。 原始数据 原始数据源如下图所示: 操作步骤 Step-01 对原数据进行分组,计算频数与正态分布。...Step-03 再添加一个数据系列,即将F列添加进来,修改为纵坐标轴,图表类型为折线。如下图所示: Step-04 将横坐标轴【标签】的【指定间隔单位】修改为2。如下图所示。...Step-05 将柱形的【间隙宽度】修改为0,有些版本也叫分类间距。 Step-06 将折线改为平滑线。如下图所示: Step-07 最后对图表进行美化即可绘制出精美的直方图与正态分布曲线。

    12.5K20

    基于直方图和散点图延伸出来的其他绘图细节

    图形是一个有效传递分析结果的呈现方式。R是一个非常优秀的图形构建平台,它可以在生成基本图形后,调整包括标题、坐标轴、标签、颜色、线条、符号和文本标注等在内的所有图形特征。...3.2 点标注 3.3 参考线 3.4 图例 4 图形布局与组合 正 文 1 认识常见的图形函数hist和plot 1.1 认识hist hist(柱形图)是呈现一维数据的一种常用图形。...主要参数解释: x:定义数据向量 breaks:定义柱形图分组。...可以是一个常数,定义分组个数,例如:breaks = 12; 可以是一个有序数据集,定义分组的边界,其中两端边界即为x的最大最小值,例如:breaks = c(4*0:5, 10*3:5...1.2 认识plot plot(散点图)是最常见的展现双变量的图形。 #plot函数表达式 plot(x, y, ...) #常规形式定义数据 plot(y~x, ...)

    62030

    《数据可视化基础》第六章:分布可视化:直方图和密度图

    进一步我们再去绘制一个基于分组形成的数据来绘制类似条形图的形状。 ? 通过以上直方图绘制的步骤我们可以了解到,其实直方图的绘制还是和分组的多少(bin)。...如果组数过多那么就会有很多条,如果组数过少则可能反应不出数据的正确的分布趋势。因此对于一个直方图的绘制,我们往往需要不断的去尝试不同的分组。 ? 对于数据分布的另外一个可视化方式则是密度图。...在密度图中,我们试图通过绘制适当的连续曲线来可视化数据的潜在概率分布。关于密度图的绘制,其实和直方图一样也是分了两步,只不过第一步的分组是分了很多小组。...都是先分组后绘制的,所以分组的多少也就导致了曲线是不一样的。 ? 另外,关于密度图有一个陷阱就是:有时候密度图会在没有数据的地方绘制出曲线。例如下面这个图,就出现了年龄是负数的曲线。...这样的话,对于数据可视化而言就会产生误导。所以对于密度图的时候,其实在一次性可视化多个分布的时候是有好处的。如果是可视化一个分布的话,可能直方图更好一些。 ?

    5.5K30

    Python Seaborn (3) 分布数据集的可视化

    直方图通过在数据的范围内切成数据片段,然后绘制每个数据片段中的观察次数,来表示整体数据的分布。 为了说明这一点,我们删除密度曲线并添加了地毯图,每个观察点绘制一个小的垂直刻度。...distplot()使用一个简单的规则来很好地猜测并给予默认的切分数量,但尝试更多或更少的数据片段可能会显示出数据中的其他特征: ?...如同直方图一样,KDE图会对一个轴上的另一轴的高度的观测密度进行描述: ? 绘制KDE比绘制直方图更有计算性。所发生的是,每一个观察都被一个以这个值为中心的正态( 高斯)曲线所取代。 ?...接下来,这些曲线可以用来计算支持网格中每个点的密度值。得到的曲线再用归一化使得它下面的面积等于1: ? 我们可以看到,如果我们在seaborn中使用kdeplot()函数,我们得到相同的曲线。...这个函数由distplot()使用,但是当您只想要密度估计时,它提供了一个更直接的界面,更容易访问其他选项: ?

    2.2K10

    seaborn从入门到精通03-绘图功能实现03-分布绘图distributional plots

    ,下一步通常是问这个分布的特征在数据集中的其他变量之间是否不同。...需要记住的重要一点是,KDE将始终向您显示平滑的曲线,即使数据本身并不平滑。...该图通过每个数据点绘制了一条单调递增的曲线,这样曲线的高度反映了具有较小值的观测值的比例: 案例1-经验累计分布图ecdf sns.displot(penguins,x="flipper_length_mm...ECDF图的主要缺点是它表示分布的形状不如直方图或密度曲线直观。考虑鳍状肢长度的双峰性如何在直方图中立即显现,但要在ECDF图中看到它,必须寻找不同的斜率。...由于密度不能直接解释,等高线是按照密度的等比例绘制的,这意味着每条曲线都显示了一个水平集,使得密度的某个比例p位于它以下。

    32920

    seaborn从入门到精通03-绘图功能实现03-分布绘图distributional plots

    ,下一步通常是问这个分布的特征在数据集中的其他变量之间是否不同。...需要记住的重要一点是,KDE将始终向您显示平滑的曲线,即使数据本身并不平滑。...该图通过每个数据点绘制了一条单调递增的曲线,这样曲线的高度反映了具有较小值的观测值的比例: 案例1-经验累计分布图ecdf sns.displot(penguins,x="flipper_length_mm...ECDF图的主要缺点是它表示分布的形状不如直方图或密度曲线直观。考虑鳍状肢长度的双峰性如何在直方图中立即显现,但要在ECDF图中看到它,必须寻找不同的斜率。...由于密度不能直接解释,等高线是按照密度的等比例绘制的,这意味着每条曲线都显示了一个水平集,使得密度的某个比例p位于它以下。

    31130

    详解seaborn可视化中的kdeplot、rugplot、distplot与jointplot

    Python大数据分析 一、seaborn简介 seaborn是Python中基于matplotlib的具有更多可视化功能和更优美绘图风格的绘图模块,当我们想要探索单个或一对数据分布上的特征时,可以使用到...,默认为True cbar:bool型变量,用于控制是否在绘制二维核密度估计图时在图像右侧边添加比色卡 color:字符型变量,用于控制核密度曲线色彩,同plt.plot()中的color参数,如'r'...(drop=True) 首先我们不修改其他参数只传入数据来观察绘制出的图像: #绘制iris中petal_width参数的核密度估计图 ax = sns.kdeplot(iris.petal_width...,默认为None,这时bins的具体个数由Freedman-Diaconis准则来确定 hist:bool型变量,控制是否绘制直方图,默认为True kde:bool型变量,控制是否绘制核密度估计曲线,...fit部分拟合出的曲线之外的所有对象的色彩 vertical:bool型,控制是否颠倒x-y轴,默认为False,即不颠倒 norm_hist:bool型变量,用于控制直方图高度代表的意义,为True直方图高度表示对应的密度

    5K32

    (数据科学学习手札62)详解seaborn中的kdeplot、rugplot、distplot与jointplot

    一、简介   seaborn是Python中基于matplotlib的具有更多可视化功能和更优美绘图风格的绘图模块,当我们想要探索单个或一对数据分布上的特征时,可以使用到seaborn中内置的若干函数对数据的分布进行多种多样的可视化...(drop=True)   首先我们不修改其他参数只传入数据来观察绘制出的图像: #绘制iris中petal_width参数的核密度估计图 ax = sns.kdeplot(iris.petal_width...可以看到这时最低密度估计曲线之外的区域没有被调色方案所浸染。   ...:bool型变量,控制是否绘制直方图,默认为True   kde:bool型变量,控制是否绘制核密度估计曲线,默认为True   rug:bool型变量,控制是否绘制对应rugplot的部分,默认为False...:bool型,控制是否颠倒x-y轴,默认为False,即不颠倒   norm_hist:bool型变量,用于控制直方图高度代表的意义,为True直方图高度表示对应的密度,为False时代表的是对应的直方区间内记录值个数

    3.2K50

    R语言可视化——密度曲线图及其美化!

    今天跟大家分享关于密度曲线图及其美化技巧! 密度曲线图可能平时大家用的不多,不过其实没什么神秘,它的功能于直方图一样,都是用于表达连续型数值变量的分布形态。...案例还是使用之前的关于钻石的那个数据集。 ? 密度曲线图所使用的图层函数为geom_density() ,而且函数内position参数位置类型与我们之前讲到的直方图、柱形图(条形图时一样的)。...果然不出我们所料,默认的带分类变量的密度曲线图确实是使用默认的identity参数。...那么我们依次尝试其他几种参数情况下的密度曲线图呈现何种效果: 堆积:(position="stack") ggplot(diamonds,aes(x=price,fill=clarity))+geom_density...大家可以看到使用dodge参数之后,R语言会有提示建议,密度曲线图中X轴必须是无重复间隔刻度的数据,而此处的概率密度曲线无法满足这个要求: 那么最后一个位置参数是position=fill (堆积百分比

    3K50
    领券