首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
您找到你想要的搜索结果了吗?
是的
没有找到

Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks

最先进的目标检测网络依赖于区域建议算法来假设目标位置。SPPnet和Faster R-CNN等技术的进步,降低了检测网络的运行时间,但是暴露了区域提案计算的瓶颈。在这项工作中,我们引入了一个与检测网络共享全图像卷积特性的区域建议网络(RPN),从而实现了几乎免费的区域建议。RPN是一个完全卷积的网络,它同时预测每个位置的目标边界和目标得分。对RPN进行端到端训练,生成高质量的区域建议,Faster R-CNN对其进行检测。通过共享卷积特性,我们进一步将RPN和Faster R-CNN合并成一个单独的网络——使用最近流行的具有“Attention”机制的神经网络术语,RPN组件告诉统一的网络去哪里看。对于非常深的VGG-16型号,我们的检测系统在GPU上帧率为5帧(包括所有步骤),同时在PASCAL VOC 2007、2012和MS COCO数据集上实现了最先进的目标检测精度,每张图像只有300个proposal。在ILSVRC和COCO 2015年的比赛中,Faster R-CNN和RPN是在多个赛道上获得第一名的基础。

02

Few-shot Adaptive Faster R-CNN

为了减少由域转移引起的检测性能下降,我们致力于开发一种新的少镜头自适应方法,该方法只需要少量的目标域映射和有限的边界框注释。为此,我们首先观察几个重大挑战。首先,目标域数据严重不足,使得现有的域自适应方法效率低下。其次,目标检测涉及同时定位和分类,进一步复杂化了模型的自适应过程。第三,该模型存在过度适应(类似于用少量数据样本训练时的过度拟合)和不稳定风险,可能导致目标域检测性能下降。为了解决这些挑战,我们首先引入了一个针对源和目标特性的配对机制,以缓解目标域样本不足的问题。然后,我们提出了一个双层模块,使源训练检测器适应目标域:1)基于分割池的图像级自适应模块在不同的位置上均匀提取和对齐成对的局部patch特征,具有不同的尺度和长宽比;2)实例级适配模块对成对的目标特性进行语义对齐,避免类间混淆。同时,采用源模型特征正则化(SMFR)方法,稳定了两个模块的自适应过程。结合这些贡献,提出了一种新型的少拍自适应Fast R-CNN框架,称为FAFRCNN。对多个数据集的实验表明,我们的模型在感兴趣的少镜头域适应(FDA)和非超视域适应(UDA)设置下均获得了最新的性能。

04

计算机视觉最新进展概览(2021年5月30日到2021年6月5日)

现有的旋转目标检测器大多继承自水平检测范式,因为后者已经发展成为一个成熟的领域。 然而,由于当前回归损失设计的局限性,尤其是对于大纵横比的目标,这些检测器难以在高精度检测中突出表现。 本文从水平检测是旋转物体检测的一种特殊情况出发,从旋转与水平检测的关系出发,将旋转回归损失的设计从归纳范式转变为演绎方法。 在动态联合优化过程中,估计的参数会以自适应和协同的方式相互影响,因此如何调节旋转回归损失中的耦合参数是一个关键的挑战。 具体来说,我们首先将旋转的包围框转换为二维高斯分布,然后计算高斯分布之间的Kullback-Leibler Divergence (KLD)作为回归损失。 通过对各参数梯度的分析,我们发现KLD(及其导数)可以根据对象的特性动态调整参数梯度。 它将根据长宽比调整角度参数的重要性(梯度权重)。 这种机制对于高精度检测是至关重要的,因为对于大纵横比物体,轻微的角度误差会导致严重的精度下降。 更重要的是,我们证明了KLD是尺度不变的。 我们进一步证明了KLD损失可以退化为流行的 损失用于水平检测。

03
领券