= 1 # MNIST data input (img shape: 28*28)
n_steps = 10 # time steps
n_hidden_units...y = tf.placeholder(tf.float32, [None, n_classes])
# 对 weights biases 初始值的定义
weights = {
# shape (...16, 1)
'out': tf.Variable(tf.random_normal([n_hidden_units, n_classes]))
}
biases = {
# shape...:
# 原始的 X 2 维数据(-1,10)
# X ==> (-1 batches , 10 steps, 1 inputs)
X = tf.reshape(X, [-1,n_steps...,n_inputs])
#lstm_cell (-1,10,16)
lstm_cell = tf.nn.rnn_cell.BasicLSTMCell(n_hidden_units, forget_bias