首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
您找到你想要的搜索结果了吗?
是的
没有找到

递归神经网络(RNN)

RNN是最强大的模型之一,它使我们能够开发如分类、序列数据标注、生成文本序列(例如预测下一输入词的SwiftKey keyboard应用程序),以及将一个序列转换为另一个序列(比如从法语翻译成英语的语言翻译)等应用程序。大多数模型架构(如前馈神经网络)都没有利用数据的序列特性。例如,我们需要数据呈现出向量中每个样例的特征,如表示句子、段落或文档的所有token。前馈网络的设计只是为了一次性地查看所有特征并将它们映射到输出。让我们看一个文本示例,它显示了为什么顺序或序列特性对文本很重要。I had cleaned my car和I had my car cleaned两个英文句子,用同样的单词,但只有考虑单词的顺序时,它们才意味着不同的含义。

06

Nat. Biotechnol. | 用机器学习预测多肽质谱库

本文介绍Max-Planck生物化学研究所计算系统生物化学研究组的Jürgen Cox近期发表在Nature Biotechnology的综述Prediction of peptide mass spectral libraries with machine learning。最近开发的机器学习方法用于识别复杂的质谱数据中的肽,是蛋白质组学的一个重大突破。长期以来的多肽识别方法,如搜索引擎和实验质谱库,正在被深度学习模型所取代,这些模型可以根据多肽的氨基酸序列来预测其碎片质谱。这些新方法,包括递归神经网络和卷积神经网络,使用预测的计算谱库而不是实验谱库,在分析蛋白质组学数据时达到更高的灵敏度或特异性。机器学习正在激发涉及大型搜索空间的应用,如免疫肽组学和蛋白质基因组学。该领域目前的挑战包括预测具有翻译后修饰的多肽和交联的多肽对的质谱。将基于机器学习的质谱预测渗透到搜索引擎中,以及针对不同肽类和测量条件的以质谱为中心的数据独立采集工作流程,将在未来几年继续推动蛋白质组学应用的灵敏度和动态范围。

01
领券