首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
您找到你想要的搜索结果了吗?
是的
没有找到

在Kettle里使用参照表进行数据校验(子转换实现)

有一种参照表叫数据确认主表。性别编码就是这种参照表的例子。有的系统使用字母M、F和U,分别代表男、女、未知;有的系统使用NULL来代表未知的性别;有的系统使用Male和Female代表男、女;而有的系统则使用完全不同的编码,如0(男)、1(女)或0(未知)、1(男)、2(女),等等。还有更复杂的情况,有的系统使用C代表儿童,使用F代表父亲,M代表母亲,各种变化和组合都有可能。要把从这些来源的数据整合到一起,要有一套统一的编码规范,然后把已有的编码映射到规范的编码上。使用单一的查询表比每个系统都有一个查询表要更好,便于维护。这里要满足两个基本的需求:

02

PASD:像素感知的稳定扩散超分辨率和个性化风格网络

图片在采集过程中经常面临着多重混合退化,例如低分辨率、模糊和噪声等。过去的深度学习模型因为模型设计时对忠实度的要求常常会给出过度平滑的结果。基于GAN的算法广泛应用于超分任务中,但是基于GAN的方法常常会产生伪影,无法生成丰富逼真的图像细节。DDPM在图像生成、图像转译领域取得了出色的成果,是GAN的有力替代品。基于DDPM/DDIM的文生图、文生视频先验被广泛应用于下游任务中。预训练的文生图稳定扩散模型能生成高分辨率高质量的自然图片,ControlNet使多类型的条件控制被应用到稳定扩散先验中。但是ControlNet不适用于像素感知的任务,直接使用会产生不一致的结果。也有一些基于Controlnet的超分辨率算法,但它们需要跳跃连接来提供像素级的信息,需要额外的训练。

01

DiffBIR:用生成式扩散先验实现盲图像恢复

图像恢复的目的是从低质量的观测中重建出高质量的图像。典型的图像恢复问题,如图像去噪、去模糊和超分辨率,通常是在受限的环境下定义的,其中退化过程是简单和已知的(例如,高斯噪声和双三次降采样)。为了处理现实世界中退化的图像,盲图像恢复(BIR)成为一个很有前途的方向。BIR的最终目标是在具有一般退化的一般图像上实现真实的图像重建。BIR不仅扩展了经典图像恢复任务的边界,而且具有广泛的实际应用领域。BIR的研究还处于初级阶段。根据问题设置的不同,现有的BIR方法大致可以分为三个研究方向,即盲图像超分辨率(BSR)、零次图像恢复(ZIR)和盲人脸恢复(BFR)。它们都取得了显著的进步,但也有明显的局限性。BSR最初是为了解决现实世界的超分辨率问题而提出的,其中低分辨率图像包含未知的退化。根据最近的BSR调查,最流行的解决方案可能是BSRGAN和Real-ESRGAN。它们将BSR表述为一个有监督的大规模退化过拟合问题。为了模拟真实的退化,分别提出了退化洗牌策略和高阶退化建模,并用对抗性损失来以端到端方式学习重建过程。它们确实消除了一般图像上的大多数退化,但不能生成真实的细节。此外,它们的退化设置仅限于×4或者×8超分辨率,这对于BIR问题来说是不完整的。第二组ZIR是一个新出现的方向。代表有DDRM、DDNM、GDP。它们将强大的扩散模型作为附加先验,因此比基于GAN的方法具有更大的生成能力。通过适当的退化假设,它们可以在经典图像恢复任务中实现令人印象深刻的零次恢复。但是,ZIR的问题设置与BIR不一致。他们的方法只能处理明确定义的退化(线性或非线性),但不能很好地推广到未知的退化。第三类是BFR,主要研究人脸修复。最先进的方法可以参考CodeFormer和VQFR。它们具有与BSR方法相似的求解方法,但在退化模型和生成网络上有所不同。由于图像空间较小,这些方法可以利用VQGAN和Transformer在真实世界的人脸图像上取得令人惊讶的好结果。然而,BFR只是BIR的一个子域。它通常假设输入大小固定,图像空间有限,不能应用于一般图像。由以上分析可知,现有的BIR方法无法在一般图像上实现一般退化的同时实现真实图像的重建。因此需要一种新的BIR方法来克服这些限制。本文提出了DiffBIR,将以往工作的优点整合到一个统一的框架中。具体来说,DiffBIR(1)采用了一种扩展的退化模型,可以推广到现实世界的退化;(2)利用训练良好的Stable Diffusion作为先验来提高生成能力;(3)引入了一个两阶段的求解方法来保证真实性和保真度。本文也做了专门的设计来实现这些策略。首先,为了提高泛化能力,本文将BSR的多种退化类型和BFR的广泛退化范围结合起来,建立了一个更实用的退化模型。这有助于DiffBIR处理各种极端退化情况。其次,为了利用Stable Diffusion,本文引入了一个注入调制子网络-LAControlnet,可以针对特定任务进行优化。与ZIR类似,预训练的Stable Diffusion在微调期间是固定的,以保持其生成能力。第三,为了实现忠实和逼真的图像重建,本文首先应用恢复模块(即SwinIR)来减少大多数退化,然后微调生成模块(即LAControlnet)来生成新的纹理。如果没有这个部分,模型可能会产生过度平滑的结果(删除生成模块)或生成错误的细节(删除恢复模块)。此外,为了满足用户多样化的需求,本文进一步提出了一个可控模块,可以实现第一阶段的恢复结果和第二阶段的生成结果之间的连续过渡效果。这是通过在去噪过程中引入潜在图像引导而无需重新训练来实现的。适用于潜在图像距离的梯度尺度可以调整以权衡真实感和保真度。在使用了上述方法后,DiffBIR在合成和现实数据集上的BSR和BFR任务中都表现出优异的性能。值得注意的是,DiffBIR在一般图像恢复方面实现了很大的性能飞跃,优于现有的BSR和BFR方法(如BSRGAN、Real-ESRGAN、CodeFormer等)。可以观察到这些方法在某些方面的差异。对于复杂的纹理,BSR方法往往会产生不真实的细节,而DiffBIR方法可以产生视觉上令人愉悦的结果。对于语义区域,BSR方法倾向于实现过度平滑的效果,而DiffBIR可以重建语义细节。对于微小的条纹,BSR方法倾向于删除这些细节,而DiffBIR方法仍然可以增强它们的结构。此外,DiffBIR能够处理极端的退化并重新生成逼真而生动的语义内容。这些都表明DiffBIR成功地打破了现有BSR方法的瓶颈。对于盲人脸恢复,DiffBIR在处理一些困难的情况下表现出优势,例如在被其他物体遮挡的面部区域保持良好的保真度,在面部区域之外成功恢复。综上所述,DiffBIR首次能够在统一的框架内获得具有竞争力的BSR和BFR任务性能。广泛而深入的实验证明了DiffBIR优于现有的最先进的BSR和BFR方法。

01

百万奖金池!TSRC推出腾讯会议专项安全众测,快来挖洞

受疫情影响,远程办公软件在全球范围内需求激增,同时也面临着巨大的安全风险和挑战。 4月8日,腾讯方面宣布,腾讯安全应急响应中心(TSRC)将联合云鼎实验室、腾讯会议共同启动「百万赏金共战“疫”」腾讯会议专项众测活动。即日起至4月30日,腾讯将发起“漏洞悬赏”, 特设百万现金奖金池,邀请全国范围内的安全专家、白帽研究员、开发者及安全爱好者,对腾讯会议特定产品及域名范围进行安全众测,单个漏洞额外奖励最高可达20万元。 据了解,这是腾讯首个百万奖金池众测项目。疫情之下,腾讯希望通过安全众测,及早预防未知产品

01
领券