首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

「R」ggplot2数据可视化

几何对象是用以呈现数据的几何图形对象,如条形、线条和点。 图形属性是几何对象的视觉属性,如x坐标和y坐标、线条颜色、点的形状等。 数值的值和图形属性之间存在着某类映射。...标度控制着数据空间的值到图形属性空间的值的映射。一个连续型的y标度会将较大的数值映射至空间中纵向更高的位置。 引导元素向看图者展示了如何将视觉属性映射回数据空间。...对条形图来说,'dodge'将分组条形图并排,'stacked'堆叠分组条形图,'fill'垂直地堆叠分组条形图并规范其高度相等。对于点来说,'jitter'减少点重叠。...指定刻度标记、labels=指定刻度标记标签、limits=控制要展示的值的范围 scale_x_discrete()和scale_y_discrete() breaks=对因子的水平进行放置和排序,labels...可能的值包括left, top, right(默认), bottom。我们也可以在图中给定的位置指定一个二元素向量。

7.4K10

R语言可视化—饼图

coord_polar(theta = "y") 将x值设为空,并且fill = category后,即可绘制常规的饼图。...接下来再对这张图进行修饰即可,观察Fig.1A,知道应该做如隐藏x,y轴、移除多余的图形元素、将value值标注在对应的色块中并且居中排列、将图例放在图的下方按照两列排列并隐藏图例名称、图例外有黑边包边...(或饼图)的堆叠位置中的显示方式。...具体来说: position_stack:这是一个位置调整函数,用于在堆叠的条形图或饼图中调整元素的位置。对于堆叠的条形图,它将标签按照条形的高度依次堆叠。...在饼图中,position_stack(vjust = 0.5)用于将标签(如百分比)放置在每个饼图扇形区域的中间位置,从而使得标签更清晰地显示在每个部分的中心。

18110
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    这些条形图的用法您都知道吗?

    在R语言的ggplot2包中,读者可以借助于geom_bar函数轻松地绘制条形图。对于条形图大家对其的印象是什么呢?又见过哪些种类的条形图呢?在本篇文章我将带着各位网友说道说道有关条形图的哪些品种。...ggplot2的语法讲解 ---- 如果读者对R语言比较熟悉,一定听过或使用过ggplot2的绘图体系了。...:用于设置条形图的其他属性信息,如统一的边框色、填充色、透明度等; width:用于设置条形图的宽度,默认为0.9的比例; binwidth:该参数在条形图中已不再使用,但可以使用在绘制直方图的geom_histogram...' # 填充色为铁蓝色 ) + # 删除x轴的标题 labs(x = '')# 绘制有序的条形图 p2 <- ggplot(data = df, # 要求x轴的省份按...然而,在实际的企业环境中,这样的图形出现的频次并不是很高,因为绝对数量的堆叠条形图并不能够达到刺激效果。读者不妨使用下面介绍的百分比堆叠条形图。

    5.6K10

    24式R入门作图必学之barplot条形图(一)

    一、前言二、初阶图形2.1 基本条形图2.2 水平柱状图2.3 带图例的堆叠柱状图2.4 带图例的分组柱状图2.5 ggplot作图2.6 plotly作图三、进阶图形3.1 水平柱状图3.2 显著性柱状图...3.3 堆积百分比柱状图3.4 分组柱状图四、讨论一、前言柱状图又称条形图,在统计分析中的使用频率最高,也是众多小白入门R最早绘制的可视化图形。...P值可视化等library(ggplot2) #读取文件rt = read.table(inputFile, header=T, sep="\t", check.names=F) #按FDR排序labels...配色方案,常用还有npg,aaas,jama,jco legend = "right", #图例位置 sort.val = "asc", #倒序...(expand=c(0,0))dev.off()图片四、讨论plotly这个包还是很有趣的,有交互性的可视化R包,可以绘制点图、线图、条形图、气泡图、桑基图、甘特图、树状图等。

    3.3K10

    课后笔记:ggplot2优雅的显示WB结果

    ✦ 几何对象(Geometric objects, geoms)代表在图中实际看到的点、线、多边形等。...「stat:」 设置统计方法,有效值是count(默认值) 和 identity,其中,count表示条形的高度是变量的数量,不能设定y值。...identity表示条形的高度是变量的值;对于连续性变量使用bin,转换的结果使用变量density来表示。...「position:」 位置调整,有效值是stack、dodge和fill,默认值是stack(堆叠),是指两个条形图堆叠摆放,dodge是指两个条形图并行摆放,fill是指按照比例来堆叠条形图,每个条形图的高度都相等...「width:」 条形图的宽度,是个比值,默认值是0.9 「color:」 条形图的线条颜色 「fill:」 条形图的填充色 基本演示 读取ImagJ数据及转换 #读取ImageJ dat=read.csv

    2.5K20

    数据挖掘知识脉络与资源整理(九)–柱形图

    柱形图 简介 英文:histogram或者column diagram 排列在工作表的列或行中的数据可以绘制到柱形图中。在柱形图中,通常沿水平轴组织类别,而沿垂直轴组织数值。...当您有代表下列内容的类别时,可以使用簇状柱形图类型: 数值范围(例如,直方图中的项目计数)。 特定的等级排列(例如,具有"非常同意"、"同意"、"中立"、"不同意"和"非常不同意"等喜欢程度)。...三维柱形图 三维柱形图使用可修改的三个轴(水平轴、垂直轴和深度轴),可对沿水平轴和深度轴分布的数据点(数据点:在图表中绘制的单个值,这些值由条形、柱形、折线、饼图或圆环图的扇面、圆点和其他被称为数据标记的图形表示...,这列变量中同一水平的因子有好几个,那么我们画条形图时,一般采用频数型,这时用水平出现的频数当做bar的高度.stat="bin"当然也可以不写,因为geom_bar默认是bin ggplot(diamonds...,堆叠条形图 ggplot(cabbage_exp, aes(x = Date, y = Weight, fill = Cultivar)) + geom_bar(stat = "identity")

    3.8K100

    (数据科学学习手札37)ggplot2基本绘图语法介绍

    图中可能还有分组,就是生成关于数据的不同子集的图形。...x*y*z, data=data)   同样的,我们也可以对图中的散点设置颜色、大小、形状等参数,与plot不同的是,qplot中可以使用更加丰富的内容和更自由的赋参方法,我们可以传入类别型数据,qplot...更多几何图像   上述的散点图只是qplot中的参数geom的默认参数point(当x与y都有传入值时的默认值,只有x传入时是hist图),这个参数用来控制图形类型,值得一提的是,他几乎涵盖了所有的图像类型...,又接连添加了两个图层,第一个图层绘制出以因子转化后的cyl为shape的散点图,第二个图层绘制出以因子转化后的cyl为colour的光滑拟合曲线,这时summary我们的p也可以观察到分图层的各图层信息...堆叠元素并将高度放缩为1 identity 不做任何调整(就像神经网络里的identity激活函数一样) jitter 给点添加扰动避免重合 stack 将图形元素堆叠起来   而上述这些位置参数通常是应用在条形图中

    7K50

    一文掌握Pandas可视化图表

    数据源选择 这里是指坐标轴的x、y轴数据,对于Series类型数据来说其索引就是x轴,y轴则是具体的值;对于Dataframe类型数据来说,其索引同样是x轴的值,y轴默认为全部,不过可以进行指定选择。...中文字符显示问题》 # 标题 df.plot.bar(title='标题',) 图例 通过参数legend可以设置图例,默认是显示图例的,可以不显示或者显示的图例顺序倒序 # 图例不显示 df.plot.bar...(legend=False) # 图例倒序 df.plot.bar(legend='reverse') 坐标轴文字 细心的朋友可能会发现,在上图中x轴标签数字显示是躺着的,怎么坐起来呢?...(figsize=(6,8)) 堆叠条形图 # 堆叠条形图 df.plot.barh(stacked=True) 直方图 直方图又称为质量分布图,主要用于描述数据在不同区间内的分布情况,描述的数据量一般比较大...(x="c", y="d", color="red", label="Group 2", ax=ax) 一组数据,x/y及z,其中x/y表示位置、z的值用于颜色区分 df.plot.scatter(

    8.1K50

    温故而知新,ggplot2 饼图的几点笔记

    对于堆叠柱状图 g,把 y 值按照比例划分弧度,因此它们的弧度比等于各自的 y 值比例。...饼图中添加文字的位置控制 - 借助公式 绘制饼图的过程中,利用 ggplot2 的 geom_bar 结合 coord_polar 实现。...为了确定数据填充的先后,同时方便在不同区域上填写上对应数据的大小,所以会先去创建有序因子,从而使数据列 dat$Num 的自然顺序和因子的顺序在一定程度上一致(一致的同向对应或反向对应)。...=as.character(dat[,2])),size=3) p_pie 如果最初构建有序因子的方向和实际数据的方向反向对应呢?...参考资料 Daitoue,《饼图 pie - ggplot2》,OmicsClass Daitoue,《饼图中添加文字的位置控制-ggplot2(非公式)》,OmicsClass

    1.4K10

    『数据可视化』一文掌握Pandas可视化图表

    数据源选择 这里是指坐标轴的x、y轴数据,对于Series类型数据来说其索引就是x轴,y轴则是具体的值;对于Dataframe类型数据来说,其索引同样是x轴的值,y轴默认为全部,不过可以进行指定选择。...图例 通过参数legend可以设置图例,默认是显示图例的,可以不显示或者显示的图例顺序倒序 # 图例不显示 df.plot.bar(legend=False) ?...# 图例倒序 df.plot.bar(legend='reverse') ? 坐标轴文字 细心的朋友可能会发现,在上图中x轴标签数字显示是躺着的,怎么坐起来呢?...堆叠条形图 # 堆叠条形图 df.plot.barh(stacked=True) ? 直方图 直方图又称为质量分布图,主要用于描述数据在不同区间内的分布情况,描述的数据量一般比较大。...一组数据,x/y及z,其中x/y表示位置、z的值用于颜色区分 df.plot.scatter(x="a", y="b", c="c", s=50) # 参数s代表散点大小 ?

    8.1K40

    ggplot2|发散性“正负”图

    前面介绍了一些ggplot绘图,ggplot2|从0开始绘制直方图,ggplot2|从0开始绘制箱线图,ggplot2|从0开始绘制折线图,这次介绍一下当数据为发散性正负值的时候,几种比较合适的展示方式...,能够保持原顺序 mtcars$car_name <- factor(mtcars$car_name, levels = mtcars$car_name) 注:改为因子使图形按照原顺序输出,很常用。...二 Diverging bars Diverging bars是一种可以同时处理负值和正值的条形图。...注意为了使柱状图创建柱形图而不是直方图,需要确保: (1)设置stat=identity (2)在aes()中同时提供x和y,其中x是字符或因子,y是数值。...四 Diverging Dot Plot 同样可以用点图传达相似的信息,圈圈里面加上具体的数值。

    1.1K20

    数据视化的三大绘图系统概述:base、lattice和ggplot2

    数据可视化是数据分析过程中探索性分析的一部分内容,可以直观展示数据集数据所具有的的特征和关联关系等。...绘图系统 ggplot2初识 更多下期详解 引言 不同类型变量常用的图表 连续数值变量 一个数值变量可以用:柱状图,点图,箱图 两个数值变量可以用:散点图 分类变量 一个分类变量的可视化:频率表,条形图...两个分类变量的可视化:关联表,相对频率表,分段条形图 一个分类变量一个数值变量: 分类箱图、条形图 1 Lattice绘图系统 特点:一次成图;适用于关系变量间的交互:在变量z的不同水平,变量y如何随变量...1.条件变量的用法~ x | A表示因子A各个水平下数值型变量x的分布情况;y ~ x | A * B表示因子A和B各个水平组合下数值型变量x和y之间的关系。...,在同一幅图中展示,只需要将条件变量放到绘图函数中的group声明中即可。

    4.4K30

    R数据可视化之ggplot2 (一)

    学完R语言的基本操作后,我们还可以继续学习R的几大著名而且使用强大的包,今天讲其中的一个,就是ggplot2,至于这个包的评价和地位,我就不多说了,感兴趣可以百度,它绝对是数据可视化的利器,好了,我们先来开始简单介绍一下这个包...首先需要加载ggplot2包 library(ggplot2) library(gcookbook) #主要用于获取数据集,若你用自己的数据集便可以不加载 1.画点线图....#当变量为因子型,绘制频数条形图 qplot: 版本改掉了一些参数,暂时未知 ggplot: ggplot(BOD, aes(x=Time, y=demand)) + geom_bar(stat="identity...") #当为数据框时,一个变量表示分类,另一个表示其数 值,我们需要在第二个图层也就是geom_bar内指定统计变换为""identity"即不做变化,若需要绘制计数条形图,则stat="identity...ggplot(mtcars, aes(x=factor(cyl))) + geom_bar() #当变量为因子型,绘制频数条形图,而且不用指定y 3.画直方图 基础绘图系统: hist(mtcars$mpg

    2K120

    Pandas数据可视化

    也可以用来展示《葡萄酒杂志》(Wine Magazine)给出的评分数量的分布情况:  如果要绘制的数据不是类别值,而是连续值比较适合使用折线图 : 柱状图和折线图区别 柱状图:简单直观,很容易根据柱子的长短看出值的大小...  直方图看起来很像条形图, 直方图是一种特殊的条形图,它可以将数据分成均匀的间隔,并用条形图显示每个间隔中有多少行, 直方图柱子的宽度代表了分组的间距,柱状图柱子宽度没有意义 直方图缺点:将数据分成均匀的间隔区间...散点图最适合使用相对较小的数据集以及具有大量唯一值的变量。 有几种方法可以处理过度绘图。...,价格20美元 Hexplot和散点图可以应用于区间变量和/或有序分类变量的组合。 ...堆叠图(Stacked plots) 展示两个变量,除了使用散点图,也可以使用堆叠图 堆叠图是将一个变量绘制在另一个变量顶部的图表 接下来通过堆叠图来展示最常见的五种葡萄酒  从结果中看出,最受欢迎的葡萄酒是

    12610

    如何通过R语言制作BBC风格的精美图片

    找到最佳的位置可能会涉及一些反复试验。要检查图例在最终绘图中出现的确切位置,必须查看保存的文件。...在轴标签中添加千位分隔符 可以指定轴文本具有千位分隔符,并带有scale_y_continuous的参数。...它们的值可以在0到1之间,其中0左对齐,而1右对齐(或垂直对齐的底部和顶部对齐)。 根据数据添加标签 上面的向图表添加注释的方法使您可以精确地指定x和y坐标。...假设我们要在条形图中添加数据标签: labelled.bars <- bars + geom_label(aes(x = country, y = lifeExp, label = round(lifeExp...将左对齐标签添加到条形图 如果您想为条形图添加左对齐标签,只需根据数据设置x参数,而是直接使用数字值指定y参数。y的确切值将取决于数据范围。

    13.1K10

    机器学习| 一个简单的入门实例-员工离职预测

    任务结构 案例背景 一家具有14999名员工的公司想要探寻为什么最优秀和最有经验的员工总是离职,同时希望能够对下一个离职的员工进行预测。...可以看出,数据集共包含14999条记录,图中显示了前20条。 2.总体情况描述 调用summary()函数观察各个变量的主要描述统计量。 ?...类别(名义型)变量和有序类别(有序型)变量在R中称为因子(factor)。因子在R中非常重要,因为它决定了数据的分析方式以及如何进行视觉呈现。...然后通过堆砌条形图对参与项目数、五年内是否升职、收入水平、是否有工作差错以及岗位与离职的关系进行探索分析。堆砌条形图通过几何函数geom_bar()获得。...参数position=fill表示垂直地堆叠分组条形图并规范其高度相等。

    3K30
    领券