展开

关键词

【python 图像识别图像识别从菜鸟

1.7K41

图像识别

我们现在正在采取下一步,发布在最新型号Inception-v3上运行图像识别的代码。 Inception-v3 使用2012年的数据对ImageNet大型视觉识别挑战进行了培训。

3K80
  • 广告
    关闭

    老用户专属续费福利

    云服务器CVM、轻量应用服务器1.5折续费券等您来抽!

  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    决策树1:初识决策树

    0x01 决策树的思想 1.1 什么是决策树 决策树是一种常见的机器学习算法,它的思想十分朴素,类似于我们平时利用选择做决策的过程。 1.2 决策树与条件概率 在前面已经从直观上了解决策树,及其构造步骤了。现在从统计学的角度对决策树进行定义能够能好地帮助我们理解模型。 2.2 决策树损失函数 与其他模型相同,决策树学习用损失函数表示这一目标。决策树学习的损失函数通常是正则化的极大似然函数。决策树学习的策略是以损失函数为目标函数的最小化。 3 决策树的构建 决策树通常有三个步骤: 特征选择 决策树的生成 决策树的修剪 决策树学习的算法通常是一个递归地选择最优特征,并根据该特征对训练数据进行分割,使得对各个子数据集有一个最好的分类的过程。 决策树生成和决策树剪枝是个相对的过程,决策树生成旨在得到对于当前子数据集最好的分类效果(局部最优),而决策树剪枝则是考虑全局最优,增强泛化能力。

    43510

    Airtest图像识别

    Airtest是一款网易出品的基于图像识别面向手游UI测试的工具,也支持原生Android App基于元素识别的UI自动化测试。 图示为AirtestIDE中脚本运行范例 本文重点是针对Airtest中的图像识别进行代码走读,加深对图像识别原理的理解(公众号贴出的代码显示不全仅供参考,详细代码可以在github查看)。 这里可以看到,Airtest也没有自研一套很牛的图像识别算法,直接用的OpenCV的模板匹配方法。 四、接着看另外一个方法 aircv.find_sift 定义在sift.py里面: ? ? FlannBasedMatcher(index_params,search_params).knnMatch(des1,des2,k=2) 哪个优先匹配上了,就直接返回结果,可以看到用的都是OpenCV的图像识别算法 六、总结 1、图像识别,对不能用ui控件定位的地方的,使用图像识别来定位,对一些自定义控件、H5、小程序、游戏,都可以支持; 2、支持多个终端,使用图像识别的话可以一套代码兼容android和ios哦,

    4.8K20

    决策树

    决策树归纳的基本算法是贪心算法,它以自顶向下递归各个击破的方式构造决策树。 贪心算法:在每一步选择中都采取在当前状态下最好的选择。 在其生成过程中,分割方法即属性选择度量是关键。 根据分割方法的不同,决策树可以分为两类:基于信息论的方法(较有代表性的是ID3、C4.5算法等)和最小GINI指标方法(常用的有CART,SLIQ及SPRINT算法等)。

    29240

    决策树

    https://blog.csdn.net/jxq0816/article/details/82829502 决策树通过生成决策规则来解决分类和回归问题。 但是由于决策树在理论上能无限制地划分节点 前剪枝:在划分节点之前限制决策树的复杂度,通过一些阈值来限制决策树的生长,比如max_depth、min_sample_split等参数。 后剪枝:在决策树构建完成之后,通过剪枝集修改树的结构,降低它的复杂度。 这两种方法相比,前剪枝的实现更加容易,也更加可控,因为在实际应用中应用得更加广泛。 决策树最大的缺点在于模型的最后一步算法过于简单:对于分类问题,只考虑叶子节点里哪个类别占比最大;而对于回归问题,则计算叶子节点内数据的平均值。这导致它在单独使用时,预测效果不理想。 因此在实际中,决策树常常被用来做特征提取,与其他模型联结起来使用。

    27730

    决策树

    一、 决策树简介 决策树是一种特殊的树形结构,一般由节点和有向边组成。其中,节点表示特征、属性或者一个类。而有向边包含有判断条件。 这就构成了一颗简单的分类决策树。 ? 1.jpg ? 2.jpg 二、 相关知识 请参考周志华《机器学习》第4章:决策树 注意,第75页有一行内容:信息熵的值越小,则样本集合的纯度越高。 此时的决策树为 ? 第一条数据,第5个属性值是2,需要再判断第3个属性,第3个属性的值为4,根据决策树得出的预测分类为1,与实际结果吻合 第二条数据,第5个属性值是1,根据决策树得出的预测分类为0,与实际结果吻合 第三条数据 1,根据决策树得出的预测分类为0,与实际结果吻合 六、 完整代码 (1)DecisionTree.py # 具有两种剪枝功能的简单决策树 # 使用信息熵进行划分,剪枝时采用激进策略(即使剪枝后正确率相同

    67820

    决策树

    因此,我们可用信息增益来进行决策树的划分属性选择,即在上述“决策树学习的基本算法”章节中第6行选择属性a_* = argmax_{a\in A}Gain(D,a).著名的ID3决策树学习算法就是以信息增益为准则来选择划分属性 而后剪枝策略针对欠拟合问题明显要优于预剪枝策略,泛化性能往往也要优于预剪枝策略;但是后剪枝策略的问题在于,其是在决策树生成之后进行的,并且要自底向上地对树中所有非叶节点进行逐一考察,因此其训练时间要远远大于未剪枝决策树和预剪枝决策树 决策树的剪枝往往是通过极小化决策树整体的损失函数(loss function)或代价函数(cost function)来实现。 决策树的生成只考虑通过信息增益(或信息增益比)对训练集的拟合程度。而决策树剪枝则通过优化损失函数还考虑了减小模型复杂度,进而提高其泛化性能。 换言之,决策树生成算法只学习局部的模型,而决策树剪枝算法则关注整体的泛化性能。

    28641

    决策树

    决策树(decision tree)是一类常见的机器学习方法。顾名思义,决策树是基于树结构来进行决策的,这恰是人类在面临决策问题时一种很自然的处理机制。 一颗决策树包含一个根节点、若干个内部节点和若干个叶节点。叶节点对应于决策结果,其他每个节点则对应于一个属性测试。 ? 决策树学习的目的是从样本数据产生一颗泛化能力强的决策树,其基本流程遵循简单且直观的“分而治之”策略: Function createBranch 检测数据集中的每个子项是否属于同一分类: If

    31120

    图像识别——MNIST

    本文使用NEURAL程序来介绍一下在SAS里如何实现图像识别。例子所用的数据集是MNIST数据集,从http://yann.lecun.com/exdb/mnist/可以获取。

    81140

    决策树

    决策树(Decision Tree) 机器学习里面的算法与编程语言里面的算法不大一样,主要是指数学上面的算法,而不是数据结构相关的算法。 不过机器学习里的与种算法叫做决策树,本质上就是编程语言中数据结构里面的树结构。 决策树是一种树形结构,其中每个内部节点表示一个属性上的测试,每个分支代表一个测试输出,每个叶节点代表一种类别。 分类树(决策树)是一种十分常用的分类方法。

    27940

    决策树

    简介 决策树(Decision Tree)是在已知各种情况发生概率的基础上,通过构成决策树来求取净现值的期望值大于等于零的概率,评价项目风险,判断其可行性的决策分析方法,是直观运用概率分析的一种图解法 由于这种决策分支画成图形很像一棵树的枝干,故称决策树。在机器学习中,决策树是一个预测模型,他代表的是对象属性与对象值之间的一种映射关系。 决策树学习通常包括 3 个步骤: 特征选择 决策树的生成 决策树的修剪 1.1 决策树场景 场景一:二十个问题 有一个叫 “二十个问题” 的游戏,游戏规则很简单:参与游戏的一方在脑海中想某个事物,其他参与者向他提问 1.2 定义 分类决策树模型是一种描述对实例进行分类的树形结构。决策树由结点(node)和有向边(directed edge)组成。 构造决策树是很耗时的任务,即使很小的数据集也要花费几秒。如果用创建好的决策树解决分类问题就可以很快完成。

    930190

    决策树

    交流、咨询,有疑问欢迎添加QQ 2125364717,一起交流、一起发现问题、一起进步啊,哈哈哈哈哈 决策树(decision tree)是一类常见的机器学习方法。 顾名思义,决策树是基于树结构来进行决策的,这恰是人类在面临决策问题时的一种很自然的处理机制。例如,我们要对“这是好瓜吗?” 一般的,一个决策树包含一个根节点、若干个内部节点和若干个叶节点;叶节点对应于决策结果,其他每个节点则对应于一个属性测试;每个节点包含的样本集合根据属性测试的结果被划分到子节点中;根节点包含样本全集。 决策树学习的目的是为了产生一颗泛化能力强,即处理未见示例能力强的决策树,其基本流程遵循简单直观的“分而治之”策略,算法如下所示, 输入:训练集 属性集 过程:函数 生成节点node. 显然,决策树的生成是一个递归过程,在决策树基本算法中,有三种情形会导致递归返回: 当节点包含的样本全属于同一类别,无需划分 当前属性集为空,或是所有样本在所有属性上取值相同,无法划分 当前划分节点包含的样本集合为空

    26620

    决策树

    一颗决策树应运而生: ? 决策树是一个分类模型,是运用已有资料训练模型,然后运用到未知类别的事物身上,从而确定该事物的类别。 就像上面故事中未曾谋面的男主人公,虽然见或不见,他就在那里,不悲不喜,但他到底属于的哪一类,就需要用上图所示的决策树来决定。 决策树的精神是要将目标属性的混乱程度降到最低。。。

    15430

    图像识别之GridMask

    GridMask: https://arxiv.org/abs/2001.04086

    78510

    图像识别之mixupcutmix

    本人kaggle分享链接:https://www.kaggle.com/c/bengaliai-cv19/discussion/126504

    1K10

    算法集锦(14)|图像识别| 图像识别算法的罗夏测试

    随着对基于深度学习的图像识别算法的大量研究与应用,我们倾向于将各种各样的算法组合起来快速进行图片识别和标注。

    61220

    图像识别——突破与应用

    最近,图像识别领域发布了白皮书,简单翻译一下做个总结。 ---- [2] 图像识别 图像识别的目标是识别图像中的对象和人,并理解上下文。图像识别属于机器知觉,机器知觉是机器学习(ML)和人工智能(AI)的一部分。 这是图像识别史上的一个转折点,也是这个领域前途光明的开始。这个成就将焦点从传统的图像识别方法转移到了使用深度神经网络的新方法。 随着算法效率的提高和处理能力的提高,许多图像识别功能可以嵌入到相机中。 图像识别技术可以用来计算物体,如汽车或图像中的人物。这种能力可以用于交通和人群管理。 配备有先进图像识别能力的智能移动机器人具有许多商业(例如服务业)和个人用途。最先进的图像识别最新的应用是协助自动驾驶汽车和汽车驾驶员。

    3.9K113

    py 决策树

    举个简单的例子,当我们预测一个孩子的身高的时候,决策树的第一层可能是这个孩子的性别。男生走左边的树进行进一步预测,女生则走右边的树。这就说明性别对身高有很强的影响。 适用情景:因为它能够生成清晰的基于特征(feature)选择不同预测结果的树状结构,数据分析师希望更好的理解手上的数据的时候往往可以使用决策树。同时它也是相对容易被攻击的分类器。 因为决策树最终在底层判断是基于单个条件的,攻击者往往只需要改变很少的特征就可以逃过监测。受限于它的简单性,决策树更大的用处是作为一些更有用的算法的基石。 决策树算法 ID3是由Ross Quinlan在1985年建立的。这个方法建立多路决策树,并找到最大的信息增益。当树长到最大的尺寸,经常应用剪枝来提高决策树对未知数据的一般化。 CART使用特征和阈值在每个节点获得最大的信息增益来构建决策树

    14930

    决策树DecisionTree

    决策树Python代码实现 1.DecisionTree.py #! python2.8 # -*- coding: utf-8 -*- # __author__ = "errrolyan" # __Date__: 18-12-10 # __Describe__ = "决策树

    16030

    扫码关注腾讯云开发者

    领取腾讯云代金券