首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

Python入门之数据处理——12种有用的Pandas技巧

◆ ◆ ◆ 我们开始吧 从导入模块和加载数据集到Python环境这一步开始: ? # 1–布尔索引 如果你想根据另一列的条件来筛选某一列的值,你会怎么做?...2. .values[0]后缀是必需的,因为默认情况下元素返回的索引与原数据框的索引不匹配。在这种情况下,直接赋值会出错。 # 6. 交叉表 此函数用于获取数据的一个初始“感觉”(视图)。...# 7–合并数据帧 当我们需要对不同来源的信息进行合并时,合并数据帧变得很重要。假设对于不同物业类型,有不同的房屋均价(INR/平方米)。让我们定义这样一个数据帧: ? ?...# 12–在一个数据帧的行上进行迭代 这不是一个常用的操作。毕竟你不想卡在这里,是吧?有时你可能需要用for循环迭代所有的行。例如,我们面临的一个常见问题是在Python中对变量的不正确处理。...◆ ◆ ◆ 结语 本文中,我们涉及了Pandas的不同函数,那是一些能让我们在探索数据和功能设计上更轻松的函数。同时,我们定义了一些通用函数,可以重复使用以在不同的数据集上达到类似的目的。

5K50

第四章: HEVC中的运动补偿

RefPicList1 列表的形成方式与此类似,唯一不同的是,它首先填充的是 POC 值高于当前帧 POC 的短期参考帧。与之前一样,这些帧按 POC 值升序排序。...形成这一列表的主要思路是,当前块的运动矢量很有可能与之前编码的相邻块的运动矢量差别不大,因此可以将其用作预测。这个简单的想法还有另一个补充。参考帧列表极有可能包含与当前帧略有不同的帧。...候选块与待编码块的参考帧相同。 如果两个条件都满足,候选块就会被放入{CandA, CandB}列表的相应位置。...例如,如果块 CandA0 已在区间预测模式下编码,且与待编码块的参考帧相同,则将其作为 CandA 放入列表。如果没有候选块满足条件 2,则将第一个满足条件 1 的候选块放入列表。...否则,包含像素 С_1 的候选块将被放在该位置上,前提同样是它满足作为同位块的条件。 将共定位块添加到列表 {CandA、CandB} 后,列表中剩余的空位置将填充零运动矢量。 图 3.

33110
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    【深度】机器学习如何帮助Youtube 实现高效转码?

    但这样做会导致进程间通信的增加,从而提高整个系统的复杂度,并在每一个数据块的处理中都要求额外的迭代。...下面的曲线图展示了来自一段使用 H.264 作为编解码器的 720p 视频的两个数据块的峰值信噪比(PSNR,单位:dB每帧)。PSNR值越高,意味着图片(视频每帧)的质量越高;反之则图片质量越低。...这将导致每一个数据块的开端和结束拥有相似的质量,而且因为数据块很短,所以总体上不同数据块之间的差异也减少了。但即便如此,要实现这样的目标,就需要很多次的重复迭代。...下面展示了来自一段 720p 视频的一些帧(从一辆赛车上拍摄)。上一列的两帧来自一个典型数据块的开始和结尾,可以看到第一帧的质量远差于最后一帧。...下一列的两帧来自上述的新型自动剪辑适应系统处理后的同一个数据块。两个结果视频的比特率为相同的 2.8 Mbps。可以看到,第一帧的质量已有了显著的提升,最后一帧看起来也更好了。

    1.4K50

    Pandas部分应掌握的重要知识点

    6、根据给定条件查询数据 实现要领有两个: ① 因为多数条件都会涉及列标签,因此都要使用loc索引器(而非iloc索引器); ② 因为通常是寻找满足条件的行,所以索引器内部需要在行的维度上表达查询条件...可以查看drop函数的相关帮助信息。 四、数据框的合并 问题:有两个数据框,如下图所示,现在期望将它们合并成如下图所示的效果,该如何做?...()[['Q1','Q2']] #如果如果只有一列,则无需使用花式索引,如下所示: #team.groupby('team').mean()['Q1'] 2、找到满足条件的分组(过滤掉不满足条件的分组...该任务可以分两步进行: #(1)用filter函数得到满足所需条件的分组中的记录,它的结果是整个数据集的子集 flt_df=team.groupby('team').filter(lambda x: (...(类似于SQL中的having子句) ② filter函数返回满足过滤条件的分组中的记录,而不是满足条件的分组 ③ 其参数必须是函数,本例中lambda函数的形参x代表每个分组 ④ 当组对象存在多列时

    4700

    Python:Numpy详解

    当前维度的值相等。当前维度的值有一个是 1。  若条件不满足,抛出 “ValueError: frames are not aligned” 异常。 ...NumPy 排序、条件刷选函数  NumPy 提供了多种排序的方法。 这些排序函数实现不同的排序算法,每个排序算法的特征在于执行速度,最坏情况性能,所需的工作空间和算法的稳定性。...numpy.where() numpy.where() 函数返回输入数组中满足给定条件的元素的索引。 ...numpy.matlib.rand() numpy.matlib.rand() 函数创建一个给定大小的矩阵,数据是随机填充的。 ...常用的 IO 函数有:  load() 和 save() 函数是读写文件数组数据的两个主要函数,默认情况下,数组是以未压缩的原始二进制格式保存在扩展名为 .npy 的文件中。

    3.6K00

    最全面的Pandas的教程!没有之一!

    你可以用逻辑运算符 &(与)和 |(或)来链接多个条件语句,以便一次应用多个筛选条件到当前的 DataFrame 上。举个栗子,你可以用下面的方法筛选出同时满足 'W'>0 和'X'>1 的行: ?...清洗数据 删除或填充空值 在许多情况下,如果你用 Pandas 来读取大量数据,往往会发现原始数据中会存在不完整的地方。...归并(Merge) 使用 pd.merge() 函数,能将多个 DataFrame 归并在一起,它的合并方式类似合并 SQL 数据表的方式。...image 连接(Join) 如果你要把两个表连在一起,然而它们之间没有太多共同的列,那么你可以试试 .join() 方法。和 .merge() 不同,连接采用索引作为公共的键,而不是某一列。 ?...比如,我们先定义一个 square() 函数,然后对表中的 col1 列应用这个函数: ? 在上面这个例子中,这个函数被应用到这一列里的每一个元素上。同样,我们也可以调用任意的内置函数。

    26K64

    Pandas知识点-缺失值处理

    如果数据量较大,再配合numpy中的any()和all()函数就行了。 需要特别注意两点: 如果某一列数据全是空值且包含pd.NaT,np.nan和None会自动转换成pd.NaT。...而不管是空字符串还是空格,其数据类型都是字符串,Pandas判断的结果不是空值。 2. 自定义缺失值有很多不同的形式,如上面刚说的空字符串和空格(当然,一般不用这两个,因为看起来不够直观)。...DataFrame的众数也是一个DataFrame数据,众数可能有多个(极限情况下,当数据中没有重复值时,众数就是原DataFrame本身),所以用mode()函数求众数时取第一行用于填充就行了。...除了可以在fillna()函数中传入method参数指定填充方式外,Pandas中也实现了不同填充方式的函数,可以直接调用。...对于这种情况,需要在填充前人工进行判断,避免选择不适合的填充方式,并在填充完成后,再检查一次数据中是否还有空值。

    4.9K40

    使用Python在Neo4j中创建图数据库

    图数据库的一个最常见的问题是如何将数据存入数据库。在上一篇文章中,我展示了如何使用通过Docker设置的Neo4j浏览器UI以几种不同的方式之一实现这一点。...在这篇文章中,我将展示如何使用Python生成的数据来填充数据库。我还将向你展示如何使用Neo4j沙箱,这样就可以使用不同的Neo4j数据库设置。...然后,我们希望有三种不同的节点类型与之对应:作者、论文和类别。 每个节点类型都有一两个属性。对于作家来说,有作者的名字。论文可以有ID和标题。最后,类别有自己的名称。...同样,在这个步骤中,我们可能会在完整的数据帧上使用类似于explosion的方法,为每个列表的每个元素获取一行,并以这种方式将整个数据帧载入到数据库中。...['c.category'], record['inDegree']) 总结 我们已经展示了如何从Python连接到Neo4j沙箱,并在满足要求的情况下上传数据。

    5.5K30

    针对 QUIC协议的客户端请求伪造攻击

    因此原始连接需要停留在初始端点上,直到服务器从客户端接收到至少一个 NEW_CONNECTION_ID 帧。当满足这些先决条件时,攻击者就会欺骗任意数据包的源地址。...然而,可以假设满足这些特殊条件的域名是相当罕见的。...如果在 PMTUD 要求下无法满足抗放大限制,QUIC 规范允许在没有或更少填充的情况下进行首次初始路径验证。在这种情况下,在终端是合法迁移客户端时,一旦成功验证了路径就必须执行额外的路径验证。...第一个数据包将在没有填充的情况下验证路径,而第二个数据包将仅通过包含一个 PADDING 帧来确保 PMTUD 限制。...虽然 lsquic 为冗余发起多路径挑战并在初始路径挑战中执行 1200 字节填充,但 mvfst 在验证路径之前已经传输了太多的流数据。

    1.5K40

    使用Python+OpenCV+yolov5实现行人目标检测

    照明条件:店内照明条件与室外摄影不同 图像质量:来自CCTVs的视频帧有时会非常差,并且可能会出现运动模糊 测试集创建 我们创建了一个验证集,其中包含来自零售闭路电视视频的视频帧。...YOLO架构使用的激活函数是Google Brains在2017年提出的Swish的变体,它看起来与ReLU非常相同,但与ReLU不同,它在x=0附近是平滑的。 ?...此外,包含人体实例的图像分布与闭路电视视频帧中的图像分布有很大不同。 结论 我们需要更多的数据来训练包含更多拥挤场景和摄像机视角介于45⁰-60⁰(类似于CCTV)的模型。...有些数据集具有满足我们的一个要求的高拥挤场景,有些包含满足另一个需求的顶角摄影机视图。 结论 虽然模型的性能有所提高,但有些数据集是视频序列,而且在某些情况下背景仍然是静态的,可能会导致过拟合。...数据增强 我们列出了在实际情况下检测时将面临的一些挑战,但是收集到的数据集分布不同,因此,我们采用了一些数据扩充技术,使训练分布更接近实际用例或测试分布。 下面是我们对数据集进行的扩展。

    2.9K10

    10个快速入门Query函数使用的Pandas的查询示例

    而括号符号[]可以灵活地基于条件过滤数据帧,但是如果条件很多的话编写代码是繁琐且容易出错的。...在多个条件过滤 一个或多个条件下过滤,query()的语法都保持不变 但是需要指定两个或多个条件进行过滤的方式 and:回在满足两个条件的所有记录 or:返回满足任意条件的所有记录 示例2 查询数量为95...df.query("Quantity == 95 and `UnitPrice(USD)` == 182") 当两个条件满足时,只有3个记录。...: df.query("Quantity == 95 or UnitPrice == 182") 它返回满足两个条件中的任意一个条件的所有列。...与数值的类似可以在同一列或不同列上使用多个条件,并且可以是数值和非数值列上条件的组合。 除此以外, Pandas Query()还可以在查询表达式中使用数学计算。

    4.4K20

    10快速入门Query函数使用的Pandas的查询示例

    而括号符号[]可以灵活地基于条件过滤数据帧,但是如果条件很多的话编写代码是繁琐且容易出错的。...在多个条件过滤 一个或多个条件下过滤,query()的语法都保持不变 但是需要指定两个或多个条件进行过滤的方式 and:回在满足两个条件的所有记录 or:返回满足任意条件的所有记录 示例2 查询数量为95...我们要使用反引号把列名包含起来 df.query("Quantity == 95 and `UnitPrice(USD)` == 182") 当两个条件满足时,只有3个记录。...: df.query("Quantity == 95 or UnitPrice == 182") 它返回满足两个条件中的任意一个条件的所有列。...与数值的类似可以在同一列或不同列上使用多个条件,并且可以是数值和非数值列上条件的组合。

    4.5K10

    整理了10个经典的Pandas数据查询案例

    而括号符号[]可以灵活地基于条件过滤数据帧,但是如果条件很多的话编写代码是繁琐且容易出错的。...在多个条件过滤 一个或多个条件下过滤,query()的语法都保持不变 但是需要指定两个或多个条件进行过滤的方式 and:回在满足两个条件的所有记录 or:返回满足任意条件的所有记录 示例2 查询数量为95...df.query("Quantity == 95 and `UnitPrice(USD)` == 182") output 当两个条件满足时,只有3个记录。...: df.query("Quantity == 95 or UnitPrice == 182") output 它返回满足两个条件中的任意一个条件的所有列。...与数值的类似可以在同一列或不同列上使用多个条件,并且可以是数值和非数值列上条件的组合。 除此以外, Pandas中的query()方法还可以在查询表达式中使用数学计算。

    24120

    R语言新神器visdat包(一行代码看穿整个数据集)

    vis_compare()可视化相同维度的两个数据帧之间的差异 vis_expect()可视化数据中满足某些条件成立的数据 vis_cor()在一个漂亮的热图中可视化变量的相关性 vis_guess...上图告诉我们:R将此数据集读取为数值型或者整数型,并在Ozone和Solar.R中存在一些缺失的数据。缺少的数据由灰色表示。...如果数据不含有任何缺失数据: vis_miss(mtcars) ? (3) vis_compare()对比数据框差异 vis_compare()可以显示两个相同大小的数据帧的差异。...如果尝试在列不同时比较两个数据框的差异,则会出现一个错误: chickwts_diff_2 <- chickwts chickwts_diff_2$new_col 数据中满足条件的值。

    1.4K40

    CABR:Beamer的内容自适应速率控制算法

    控制模块再次确定该帧是否应该重新编码;在这种情况下,CABR控制模块会为下一次迭代设置编码参数并重复上述过程;如果控制模块确定对最佳帧参数的搜索已完成,则它将指示出,应在输出视频流中使用该帧的所有先前编码版本中的特定帧...要将CABR引擎与视频编码器集成在一起,编码器应支持多项条件:首先,编码器应该能够使用几个不同的编码参数(例如QP值)对输入帧(已经编码的帧)进行重新编码,并保存每个编码的不同阶段状态,包括初始编码;保存状态的原因是当...样品编码结果 下面,我们提供了两个基于CABR引擎编码的示例结果,当与Beamer 5集成时,Beamer的HEVC软件编码器将分别说明CABR的不同方面。...image.png 图4和5显示了来自编码剪辑的样本帧,左侧为VBR编码,右侧为CABR编码。顶部的两个图像是从源编码到5 Mbps码率的帧,而底部的两个图像是从1.5 Mbps编码得到的帧。...此示例表明,CABR不仅适应内容的复杂性,还适应目标编码的质量,并在提供可观节省的同时保留满足运动画面的感知质量。 image.png

    1.7K40

    整理了10个经典的Pandas数据查询案例

    而括号符号[]可以灵活地基于条件过滤数据帧,但是如果条件很多的话编写代码是繁琐且容易出错的。...在多个条件过滤 一个或多个条件下过滤,query()的语法都保持不变 但是需要指定两个或多个条件进行过滤的方式 and:回在满足两个条件的所有记录 or:返回满足任意条件的所有记录 示例2 查询数量为95...df.query("Quantity == 95 and `UnitPrice(USD)` == 182") output 当两个条件满足时,只有3个记录。...: df.query("Quantity == 95 or UnitPrice == 182") output 它返回满足两个条件中的任意一个条件的所有列。...与数值的类似可以在同一列或不同列上使用多个条件,并且可以是数值和非数值列上条件的组合。 除此以外, Pandas中的query()方法还可以在查询表达式中使用数学计算。

    3.9K20

    NumPy Beginners Guide 2e 带注释源码 九、使用 Matplotlib 绘图

    # 绘制函数,plot 并不会立即显示 plt.plot(x, y) # 设置两个轴的标签 plt.xlabel('x') plt.ylabel('y(x)') # 显示图像 plt.show()...plt.subplot(311) # 将原函数绘制为红色曲线 plt.plot(x, y, 'r-') plt.title("Polynomial") # 三行一列的第二个位置 plt.subplot...基于条件填充区域 from matplotlib.finance import quotes_historical_yahoo from matplotlib.dates import DateFormatter...triangles.set_ydata(data[1]) return circles, triangles # 动画需要一个数据序列(可迭代对象) # 这是一个长度无限的生成器,每次迭代都返回...Figure 实例,帧函数,数据序列,以及刷新间隔 # 每次刷新时,都会用数据序列的当前值调用帧函数 anim = animation.FuncAnimation(fig, update, generate

    70310

    TensorFlow 分布式之论文篇 Implementation of Control Flow in TensorFlow

    只要执行帧之间没有数据依赖关系,则来自不同执行帧的操作可以并行运行。 Switch:Switch 运算符会根据输入控制张量 p 的布尔值,将输入张量 d 转发到两个输入中的一个。...一个执行帧中执行的任何操作都有一个唯一的迭代 ID,这使得我们能够唯一地识别迭代计算中同一操作的不同调用(比如 hile 操作之中,某一个 op 可能会多次执行)。...,我们都会为条件语境创建一个新的控制流上下文,并在上下文中调用其计算图构造函数(fn1或fn2)。...一个参与设备可以有多个迭代在并行运行,而且两个参与设备可以同时在同一个循环的不同迭代中工作。...这种结构对嵌套条件和循环都有效。对于嵌套在 while 循环中的条件式,我们引入一个堆栈来保存每次前向迭代的谓词值,并在反向 prop 中使用堆栈中的值(以相反的顺序)。

    10.6K10

    如何有效增强数据集,yolov5 mAP从0.46提升到了0.79?

    背景很乱: 零售商店有很多的干扰或杂物(对我们的模型来说),比如衣服、货架、人体模型等,这可能会导致误报。 灯光条件:店内的灯光条件与户外摄影不同。...包含人的实例的图像数量较少,人群密度也较低。此外,包含人的实例的图像分布与CCTV视频帧中的非常不同。...我们可以看到满足我们确切需求的数据集并不是很多,但是我们仍然可以使用这些数据集,因为具备人的边界框的基本要求已经得到了满足。下载所有数据集后,我们将其转换为常见的COCO格式用于检测。...一些数据集有高拥挤的场景,满足我们的一个要求,和一些包含顶部的相机视角,满足另一个要求。 总结 虽然模型的性能有所提高,但有些数据集是视频序列,而且在某些情况下背景仍然是静态的,可能会导致过拟合。...我们从数据集中过滤了三种类型的用例。 标签错误的边框 图像包含非常小的边框或太多太拥挤 重复的或近似重复的帧 为了去除重复的帧,我们只从视频序列中选择稀疏的帧。

    27.9K52

    2022年最新Python大数据之Excel基础

    数据->删除重复项->选择删除条件 缺失值处理 三种处理缺失值的常用方法 1.填充缺失值,一般可以用平均数/中位数/众数等统计值,也可以使用算法预测。...2.删除缺失值,如果数据缺失比例过高,可以考虑删除,比如某一列数据>50%都是缺失,可以考虑删除这一列。...1.常用函数计算 使用函数计算数据,需要名称区域单元格的命名方法。 如A1单元到B6单元格区域,命名方法是在两个单元格名称中间加“:”号,写法为“A1:B6”。...举例: Excel【公式】选项卡中提供了常用函数的快捷插入,在记不住常用函数的前提下,可以通过插入的方式进行 数据转换 1.数据分类 使用VLOOKUP进行数据分组,要设置一个条件区域,目的是告诉函数...自定义筛选 普通筛选只能按照一种标准进行筛选,如果需要筛选出满足两个条件的数据,就需要用到自定义筛选。

    8.2K20
    领券