一、向量、矩阵、数据框和列表的区别 1)向量:一维 2)矩阵:二维,只允许一种数据类型 3)数据框:二维,每列只允许一种数据类型 4)列表:容纳各种数据类型 ps:数据类型的判断:clss()...0.05 (后加上要增加新列的列名) 4、修改行名和列名 行名修改:rownames(数据框的名称)<-c() #重新赋值 名列名修改:colnames(数据框的名称)<-c() 改一个行名或列名...] [,2] [,3] [1,] 1 4 7 [2,] 2 5 8 [3,] 3 6 9 (2)转置(行变列,列变行) t(矩阵名称...as.data.frame() as.matrix() 最后用class() 明确一下数据类型 (4)矩阵画热图 图片 四、列表 (1)列表的新建 > l<-list(m1=matrix(1...(注意数据类型) l[1] 取出数据是列表 l[[1]] / l m1 取出数据是matrix或array > class(l[1]) [1] "list" > class(l[[1]]) [
生信技能树学习之数据结构--矩阵、列表 矩阵matrix 二维,只允许一种数据类型 列表。...可装万物,没有列与列的区别, 矩阵和列表 矩阵的来源 # 1.由数值型数据框转换 m1 = as.matrix(iris[,1:4]) # 2.由向量改变维度而来 m2 = matrix(rnorm...、新建列表和取子集 l <- list(m1=matrix(1:9, nrow = 3), m2=matrix(2:9, nrow = 2)) l ##列表里的下一级也叫元素...,m1,m2只是列表l中的元素名字,m1和m2都是矩阵。...l[[2]] ###取出第二个矩阵, l$m1 ###取出m1子集 列表的下一级也是元素,列表的元素可以包罗万象,什么数据结构都可以 ### 补充:元素的名字 scores = c(100,59,73,95,45
总而言之,模型视图投影矩阵=投影矩阵×视图矩阵×模型矩阵,模型矩阵将顶点从局部坐标系转化到世界坐标系中,视图矩阵将顶点从世界坐标系转化到视图坐标系下,而投影矩阵将顶点从视图坐标系转化到规范立方体中。...;如果局部坐标系还要继续变换,只要将新的变换矩阵按照顺序左乘这个矩阵,得到的新矩阵能够表示之前所有变换效果的叠加,这个矩阵称为「模型矩阵」。...这个表示整个世界变换的矩阵又称为「视图矩阵」,因为他们经常一起工作,所以将视图矩阵乘以模型矩阵得到的矩阵称为「模型视图矩阵」。...相机空间的左、右、上、下边界是受限于屏幕的边缘,同时也设定前、后边界,因为你很难看清太近或太远的东西。相机空间就是上述的四棱锥台体。 主要的有两种投影方式,正射投影和透视投影。...前者用于精确制图,如工业零件侧视图或建筑物顶视图,从屏幕上就可以量测平行于屏幕的线段长度;后者用于模拟视觉,远处的物体看上去较小。这里只讨论透视投影,正射投影是类似的。
矩阵分解 通常用于此问题的一种技术是将用户 - 艺术家 - 戏剧的矩阵投影到低等级近似中,然后计算该空间中的距离。...我们的想法是采用原始的播放计数矩阵,然后将其减少到两个小得多的矩阵,这些矩阵在乘以时接近原始矩阵: ?...通过减少这样的数据的维数,我们实际上将输入矩阵压缩为两个小得多的矩阵。 潜在语义分析 出于本文的目的,我们只需要知道SVD生成输入矩阵的低秩近似。 像这样使用SVD称为潜在语义分析(LSA)。...LSA 类似于LSA的'Arcade Fire': ? 虽然LSA成功地概括了我们数据的某些方面,但这里的结果并不是那么好。...推荐系统中使用的许多MF模型都采用了明确的数据,用户使用类似5星级评定标准评估了他们喜欢和不喜欢的内容。
酉矩阵 若n阶复矩阵A满足 A^HA=AA^H=E 则称A是酉矩阵,记为A\in U^{n\times n} 设A\in C^{n\times n},则A是酉矩阵的充要条件是A的n个列(或行)向量是标准正交向量组...\in R^{n\times n},则A是正交矩阵的充要条件是A的n个列(或行)向量是标准正交向量组 正交矩阵的性质 A^{-1}=A^T\in E^{n\times n} \det A=±1 AB,BA...forall \alpha,\beta\in V都有 (\mathscr{B}(\alpha), \mathscr{B}(\beta))=(\alpha, \beta) 设\mathscr{A}是酉空间(或欧式空间...)V的线性变换,则下列命题等价: \mathscr{A}是酉变换(或正交变换) ||\mathscr{A}(\alpha)||=||\alpha||,其中\forall \alpha \in V \sigma...将V的标准正交基变到标准正交基 酉变换(或正交变换)在标准正交基下的矩阵表示是酉矩阵(或正交矩阵) ---- 满秩矩阵的QR分解 若n阶实矩阵A\in \mathbb{C}^{n\times n}满秩,
文章目录 一、矩阵构造 1、列举元素 2、顺序列举 3、矩阵重复设置 4、生成元素 1 矩阵 二、矩阵计算 1、矩阵相加 2、矩阵相减 3、矩阵相乘 4、矩阵对应相乘 5、矩阵相除 6、矩阵对应相除..., 现在有 16 列 C = repmat(B, 3, 2) 执行结果 : 4、生成元素 1 矩阵 矩阵构造 , 生成指定行列的矩阵, 矩阵元素是 1 ; % 矩阵构造 , 生成 3 行 3 列的矩阵...: 2、矩阵相减 矩阵相减就是对应位置相加 , 只有行列相等的矩阵才能相减 ; % 矩阵相减就是对应位置相加 % 只有行列相等的矩阵才能相减 D = A - B 执行结果 : 3、矩阵相乘 矩阵相乘...: 第一个矩阵的行数等于第二个矩阵的列数 , 第一个矩阵的列数等于第二个矩阵的行数 , 满足上面两个条件 , 才可以相乘 ; % 矩阵相乘 % 第一个矩阵的行数等于第二个矩阵的列数 , % 第一个矩阵的列数等于第二个矩阵的行数...C = A + B % 矩阵相减就是对应位置相加 % 只有行列相等的矩阵才能相减 D = A - B % 矩阵相乘 % 第一个矩阵的行数等于第二个矩阵的列数 , % 第一个矩阵的列数等于第二个矩阵的行数
import numpy as np '''------------------------------------创建矩阵---------------------------''' ''' 创建矩阵...-------------------------''' ''' triu():提取矩阵上三角矩阵 (upper triangle of an array.) triu(m, k=0) m:表示一个矩阵...-------------------------''' ''' tril():提取矩阵下三角矩阵 (lower triangle of an array.) ''' #k=0表示正常的下三角矩阵 e...numpy.diag(v,k=0) 返回:以一维数组的形式返回方阵的对角线(或非对角线)元素 两次使用:np.diag() 将数组类型转化为矩阵:mat() ''' print(a) ''' [[1...") #k=-1表示对角线的位置下移1个对角线 j = np.diag(a, k=-1) print(j) #[4 8] print("-----\n") ''' 使用两次np.diag() 获得二维矩阵的对角矩阵
,海森矩阵和牛顿法的介绍,非常的简单易懂,并且有Hessian矩阵在牛顿法上的应用。...Jacobian矩阵和Hessian矩阵 发表于 2012 年 8 月 8 日 1. Jacobian 在向量分析中, 雅可比矩阵是一阶偏导数以一定方式排列成的矩阵, 其行列式称为雅可比行列式....雅可比矩阵 雅可比矩阵的重要性在于它体现了一个可微方程与给出点的最优线性逼近. 因此, 雅可比矩阵类似于多元函数的导数....海森Hessian矩阵 在数学中, 海森矩阵(Hessian matrix或Hessian)是一个自变量为向量的实值函数的二阶偏导数组成的方块矩阵, 此函数如下: 2), 最优化 在最优化的问题中,...线性最优化至少可以使用单纯形法(或称不动点算法)求解, 但对于非线性优化问题, 牛顿法提供了一种求解的办法.
或 \left.\mathbb{R}^{n \times n}\right)$,若存在$U \in U^{n \times n}\left(\right....或 \left.E^{n \times n}\right)$,使得 $$ {U}^{\mathrm{H}} {A} {U}={U}^{-1} {A} {U}={B}\left(\text {或 } {...U}^{\mathrm{T}} {A} {U}={U}^{-1} {A} {U}={B}\right) $$ 则说$A$酉相似(或正交相似)于$B$ (Schur引理)任何一个$n$阶复矩阵$A$酉相似于一个上...---- Hermite矩阵 定义:$A\in \mathbb{C}^{n\times n}$,若$A^H=A$,则称$A$为Hermite矩阵 定理:Hermite矩阵是正规矩阵,Hermite矩阵的特征值是实数...\mathop{max}\limits_{x\neq 0} R(x), \lambda_n = \mathop{min}\limits_{x\neq 0} R(x)$ 注:本节内容实际上都是一些定义或定理
在之前的文章《线性代数之矩阵》中已经介绍了一些关于矩阵的基本概念,本篇文章主要就求解逆矩阵进行进一步总结。...=0,我们就称A为非奇异矩阵。奇异矩阵是没有逆矩阵的。...最后我想说的是我本来想求逆矩阵的,不凑巧找了个奇异矩阵,饶恕我吧:( 伴随矩阵 Adjugate Matrix 伴随矩阵是将matrix of cofactors进行转置(transpose)之后得到的矩阵...,因此没有逆矩阵,但如果是非奇异矩阵,我们则可以按照之前的公式求得逆矩阵。...逆矩阵计算 初等变换 求解逆矩阵除了上面的方法外,还可以用更加直观的方法进行求解,这就是初等变换,其原理就是根据A乘以A的逆等于单位矩阵I这个原理,感兴趣的同学可以看参考链接中的视频。
“向量”——一维 “表格”——二维 matrix 矩阵-二维,只允许一种数据类型 data.frame 数据框-二维,每列只允许一种数据类型 list列表:可装万物 1.数据框来源 (1)用代码新建 (...2)由已有数据转换或处理得到 (3)读取表格文件 (4)R语言内置数据(没有赋值就可以直接使用的数据,例如iris) 2.新建数据框* 读取文件 df2<-read.csv("gene.csv") df2...修改全部行名 #只修改某一行/列的名 colnames(df1){2} <- "CHANGE" #修改一个列名 6.两个数据框的连接 按照共同的列名取交集,后连接 两个数据框列中有交集时既可以使用,自动连接 矩阵新建和取子集...矩阵画热图 pheatmap::pheatmap(m) #热图结果默认聚类 pheatmap::pheatmap(m,cluster_cols = F,cluster_rows = F) #修改默认聚类...列表新建和取子集(列表可装万物) x[1] x$m1 #列表取子集 元素的“名字”-names() 后置的难点 数据框按照逻辑值取子集 #将逻辑值赋值给k,按逻辑值在df1中取子集**实战中会经常遇到
矩阵的子矩阵 注意矩阵的下标是从 0开始的到n-1和m-1 获取某一列的子矩阵: /** * 矩阵的子矩阵函数 * * @param args *...参数a是个浮点型(double)的二维数组,n是去掉的列号 * @return 返回值是一个浮点型二维数组(矩阵去掉第n列后的矩阵) */ public static double[][] zjz...矩阵b -------------------------------- 7.0 8.0 6.0 5.0 输出结果: 一维矩阵的子矩阵 ---------------------------...----- 3.0 2.0 4.0 矩阵的子矩阵 -------------------------------- 1.0 3.0 矩阵的子矩阵 -------------------------...------- 7.0 8.0 矩阵的子矩阵 -------------------------------- 5.0
前言 还记得被Jacobian矩阵和Hessian矩阵统治的恐惧吗?本文清晰易懂的介绍了Jacobian矩阵和Hessian矩阵的概念,并循序渐进的推导了牛顿法的最优化算法。...希望看过此文后,你对这两类矩阵有一个更深刻的理解。 在向量分析中,雅可比矩阵是一阶偏导数以一定方式排列成的矩阵,其行列式称为雅可比行列式....雅可比矩阵 雅可比矩阵的重要性在于它体现了一个可微方程与给出点的最优线性逼近. 因此, 雅可比矩阵类似于多元函数的导数 。 假设 是一个从欧式n维空间转换到欧式m维空间的函数。...海森Hessian矩阵 在数学中,海森矩阵(Hessian matrix或Hessian)是一个自变量为向量的实值函数的二阶偏导数组成的方块矩阵,此函数如下: 如果f的所有二阶导数都存在,那么f的海森矩阵即...更接近f(x)=0,于是乎,迭代求解的想法就很自然了,可以进而推出: 通过迭代,这个式子必然在 的时候收敛,整个过程如下图: 2), 最优化 在最优化的问题中,线性最优化至少可以使用单纯形法(或称不动点算法
··+k_s\beta_s\right>=k_1\left+···k_s\left$ ---- 线性组合的内积的矩阵表示...beta_t\right>\end{bmatrix}\begin{bmatrix}l_1\\ \vdots \\ l_t\end{bmatrix} \end{aligned} $$ ---- Gram矩阵...,\beta_t$的协Gram矩阵,记为$G(\alpha_1,...,\alpha_s;\beta_1,...,\beta_t)$ $\alpha_1,......,\alpha_s$的Gram矩阵,记为$G(\alpha_1,...,\alpha_s)$ $\alpha_1,......,\beta_t)A $$ Gram矩阵的性质 $Rank(G)=rank(\alpha_1,...
},满足 A = BC \mathbb{C}_r表示矩阵的秩为r 实际上上述定理用文字描述就是,一个亏秩的矩阵可以分解成一个列满秩与行满秩矩阵的乘积 证明:因为rank(A)=r,所以一定可以找到与A相似的一个矩阵...,\begin{bmatrix}E_r\\0\end{bmatrix}是一个列满秩矩阵,所以B=P^{-1}\begin{bmatrix}E_r\\0\end{bmatrix}仍是一个列满秩矩阵;同理,...C=\begin{bmatrix}E_r&0\end{bmatrix}Q^{-1} 矩阵满秩分解的计算 如何在给定矩阵A的情况下,求出矩阵B,C呢?...LU分解 LU分解(LU Decomposition)是矩阵分解的一种,可以将一个矩阵分解为一个单位下三角矩阵和一个上三角矩阵的乘积,以四阶矩阵为例 L = \begin{bmatrix}1&0&0&0...bmatrix}l&m\\0&n\end{bmatrix} $$ \begin{cases} al=0\\ am=1\\ bl=1\\ bm+cn=0 \end{cases} $$ 由al=0得a=0或l
其中主要是使用了适用于平面场景的单应性矩阵H和适用于非平面场景的基础矩阵F,程序中通过一个评分规则来选择适合的模型,恢复相机的旋转矩阵R和平移矩阵t 那么下面主要讲解关于对极几何中的基础矩阵,本质矩阵...根据对极约束可以引出本质矩阵和基础矩阵。...当K已知时提取中间的矩阵得到本质矩阵E,E矩阵同样表示的是对极约束的关系,只不过它不再涉及相机内参,只由两视图之间的姿态关系决定: ?...F矩阵的性质有三: 1, 3*3且自由度为7的矩阵 2,kF 为基础矩阵,相差一个尺度自由度 3,F矩阵的秩为2 基础矩阵的求解方法: 1,直接线性变换法(8点法+最小二乘法) 2,RANSAC-估计基础矩阵...单应矩阵的应用场景是相机只有旋转而无平移的时候,两视图的对极约束不成立,基础矩阵F为零矩阵,这时候需要使用单应矩阵H,场景中的点都在同一个平面上,可以使用单应矩阵计算像点的匹配点。
文章目录 一、矩阵构造 1、获取指定位置的矩阵元素 2、获取指定行的元素 3、获取指定列的元素 二、矩阵下标排列顺序 一、矩阵构造 ---- 1、获取指定位置的矩阵元素 获取矩阵指定行列元素的方法 :...% 生成 5 阶幻方矩阵 A = magic(5) % 从 A 矩阵中获取第 2 行第 3 列元素 B = A(2,3) 2、获取指定行的元素 冒号表示全部 , 在下标中使用冒号 , 表示获取指定行.../ 列的所有元素 ; % 取出 A 矩阵的第 3 行所有元素 % : 表示全部 C = A(3,:) 运行效果 : 3、获取指定列的元素 冒号表示全部 , 在下标中使用冒号 , 表示获取指定行 /...列的所有元素 ; % 取出 A 矩阵的第 3 列所有元素 % : 表示全部 D = A(:,3) 运行效果 : 二、矩阵下标排列顺序 ---- matlab 中的矩阵下标排列是按照列进行排列的 ,...5 个元素是第 1 列第 5 行的元素 , 第 6 个元素是第 2 列第 1 行的元素 ; 生成 5 阶幻方 , 并将其大于 20 的索引列举出来 ; % 生成 5 阶幻方矩阵
Jacobian矩阵 雅可比矩阵的重要性在于它体现了一个可微方程与给出点的最优线性逼近. 因此, 雅可比矩阵类似于多元函数的导数。 ? Hessian矩阵 ?
Toeplitz 矩阵 1.1 定义 Toeplitz(特普利茨)矩阵又称为常对角矩阵,该矩阵每条左上至右下的对角线均为常数。...循环矩阵 2.1 定义 循环矩阵是一种特殊的 Toeplitz 矩阵,其列向量 / 行向量的每个元素都是前一个列向量 / 行向量个元素循环右移一个位置的结果。...如果矩阵 相对于子矩阵元素 构成 Toeplitz / 循环矩阵,则称矩阵 为 分块 Toeplitz / 循环矩阵。 4....双重分块 Toeplitz / 循环矩阵 对于分块 Toeplitz / 循环矩阵 ,如果其子矩阵 也是 Toeplitz / 循环矩阵,则称矩阵 为 双重分块 Toeplitz /...循环矩阵。
在说矩阵前,先说一小小点关于数组的知识: 数组分为两种: 行主映射 从第一行开始,依次对没一行的索引从左至右连续编号。...一个m×n的矩阵,是一个m行、n列的表,m和n是矩阵的维数。 矩阵主要完成的操作有三种: 矩阵相加 矩阵转置 矩阵相乘 这三个概念,大学线性代数的课程里都讲过,这里就不赘述。...y = x; cout<<"The matrix y is:"<<endl; cout <<y; //两个矩阵相加结果 z = y + x; cout...<<"y + x is"<<endl; cout<<z; //矩阵求负 cout<<"-(y+x) is "<<endl; cout<<-z; //矩阵相乘...<<endl; return 0; } matrix.h /* * 矩阵类,实现了矩阵的一些基础性质:矩阵相加,相乘,矩阵转置 * matrix.h */ #ifndef MATRIX_H
领取专属 10元无门槛券
手把手带您无忧上云