ExcelVBA删除包含指定字符所在的行 =====相关==== 1.文件夹中多工作薄指定工作表中提取指定字符的数据 2.回复网友VBA之Find_FindNext_并修改数据 =====end==...== 【问题】 例子:相类似的问题也可以哦今天有人提出这样子一个问题他有很多个工作表成绩表,想删除“缺考”的字符所在的行 【思路】 用Find、FindNext找到“缺考“的行,再union再删除...【代码】 Sub yhd_ExcelVBA删除包含指定字符所在的行() Dim sht As Worksheet, s As String s = "缺考" For Each...清理 =====学习笔记===== 在Excel中通过VBA对Word文档进行查找替换 ExcelVBA文件操作-获取文件夹(含子文件夹)所有文件列表(优化版) ExcelVBA随机生成不重复的N
本文记录一个 WPF 已知问题,当传入到渲染的 Geometry 几何里面包含了 NaN 数值,将可能让应用程序收到从渲染层抛上来的 UCEERR_RENDERTHREADFAILURE 异常,且此异常缺乏必要信息...原因是这个 rect 包含了 NaN 的内容。...那为什么这个 rect 包含了 NaN 的内容,是在哪一层投毒的 如上面代码,在 CShapeBase::GetFillBounds 方法里面就获取到了不合法的 box 值。...先看一下最开始投毒的逻辑,在 PathGeometryWrapper.cpp 定义的 GetStartPoint 方法,返回了本文使用的代码里面传入的包含 NaN 的点的值,如以下代码,拿到的 m_pFigure...协议,意味着允许任何人任何组织和企业任意处置,包括使用,复制,修改,合并,发表,分发,再授权,或者销售。
使用linux服务器,免不了和vi编辑打交道,命令行下删除数量少还好,如果删除很多,光靠删除键一点点删除真的是头痛,还好Vi有快捷的命令可以删除多行、范围。 删除行 在Vim中删除一行的命令是dd。...删除多行 要一次删除多行,请在dd命令前添加要删除的行数,例如,要删除五行,请执行以下操作: 1、按Esc键进入正常模式。 2、将光标放在要删除的第一行上。...删除包含模式的行 基于特定模式删除多行的语法如下: :g//d 全局命令(g)告诉删除命令(d)删除所有包含的行。 要匹配与模式不匹配的行,请在模式之前添加感叹号(!): :g!...//d 模式可以是文字匹配或正则表达式,以下是一些示例: :g/foo/d-删除所有包含字符串“foo”的行,它还会删除“foo”嵌入较大字词(例如“football”)的行。 :g!.../foo/d-删除所有不包含字符串“foo”的行。 :g/^#/d-从Bash脚本中删除所有注释,模式^#表示每行以#开头。 :g/^$/d-删除所有空白行,模式^$匹配所有空行。
有一个Excel操作问题:我想删除所有包含有“完美Excel”的行,如何快速操作? 我想,你肯定是多么地不想再看“完美Excel”公众号了!...如下图1所示的工作表,现在要删除单元格内容为“完美Excel”所在的行。 ? 图1 首先,选择所有的数据。...接着,按Ctrl+F键,在“查找和替换”对话框的“替换”选项卡中,输入“完美Excel”,如下图2所示。 ?...图2 单击“查找全部”按钮,在下面的列表框中选中全部查到的单元格(先选取第1行,按住Shift键,滚动到最后,选取最后1行,这将选择所有查找到的结果),如下图3所示。 ?...图4 单击“确定”按钮,即可删除所有含有“完美Excel”内容的单元格所在的行。 详细的操作演示见下图5。 ? 图5
一、前言 前几天在Python白银交流群【上海新年人】问了一个Pandas数据提取的问题,问题如下:大佬们,请教个小问题,我要查找某列中具体的值,譬如df[df['作者'] == 'abc'],但实际上这样子我找不到...ABC,因为对方实际是小写的abc。...给了一个指导,如下所示: 全部转大写或者小写你就不用考虑了 只是不确定你实际的代码场景。后来【论草莓如何成为冻干莓】给了一份代码,如下图所示: 顺利地解决了粉丝的问题。...但是粉丝的需求又发生了改变,下一篇文章我们一起来看看这个“善变”的粉丝提问。 三、总结 大家好,我是皮皮。...这篇文章主要盘点了一个Pandas数据提取的问题,文中针对该问题,给出了具体的解析和代码实现,帮助粉丝顺利解决了问题。
一、前言 前几天在Python白银交流群【上海新年人】问了一个Pandas数据提取的问题,但是粉丝又改需求了,需求改来改去的,就是没个定数。 这里他的最新需求,如上图所示。...他的意思在这里就是要上图中最下面这3个。 二、实现过程 后来【论草莓如何成为冻干莓】给了一份代码,如下图所示: 顺利地解决了粉丝的问题。...可以看到,代码刚给出来,但是粉丝的需求又发生了改变,不过不慌,这里又给出了对应代码,如下图所示: 一看就会,一用就废,粉丝自己刚上手,套用到自己的数据里边,代码就失灵了。...下一篇文章,我们再来看这位粉丝新遇到的问题。 三、总结 大家好,我是皮皮。这篇文章主要盘点了一个Pandas数据提取的问题,文中针对该问题,给出了具体的解析和代码实现,帮助粉丝顺利解决了问题。...最后感谢粉丝【上海新年人】提出的问题,感谢【鶏啊鶏。】、【论草莓如何成为冻干莓】给出的思路,感谢【莫生气】等人参与学习交流。
他的代码照片如下图: 这个代码这么写,最后压根儿就没有得到他自己预期的结果,遂来求助。这里又回归到了他自己最开始的需求澄清!!!论需求表达清晰的重要性!...二、实现过程 后来【莫生气】给了一份代码,如下图所示: 本以为顺利地解决了问题,但是粉丝又马上增改需求了,如下图所示: 真的,代码写的,绝对没有他需求改的快。得亏他没去做产品经理,不然危矣!...能给你做出来,先实现就不错了,再想着优化的事呗。 后来【莫生气】给了一个正则表达式的写法,总算是贴合了这个粉丝的需求。 如果要结合pandas的话,可以写为下图的代码: 至此,粉丝不再修改需求。...这篇文章主要盘点了一个Pandas数据提取的问题,文中针对该问题,给出了具体的解析和代码实现,帮助粉丝顺利解决了问题。 最后感谢粉丝【上海新年人】提出的问题,感谢【鶏啊鶏。】...、【论草莓如何成为冻干莓】、【冯诚】给出的思路,感谢【莫生气】等人参与学习交流。
下班路上看见网上有人问一个问题: oracle 10g以后count(*)和count(非空列)性能方面有什么区别?...首先,准备测试数据,11g库表bisal的id1列是主键(确保id1列为非空),id2列包含空值, ?...前三个均为表数据总量,第四个SQL结果是99999,仅包含非空记录数据量,说明若使用count(允许空值的列),则统计的是非空记录的总数,空值记录不会统计,这可能和业务上的用意不同。...其实这无论id2是否包含空值,使用count(id2)均会使用全表扫描,因此即使语义上使用count(id2)和前三个SQL一致,这种执行计划的效率也是最低的,这张测试表的字段设置和数据量不很夸张,因此不很明显...总结: 11g下,通过实验结论,说明了count()、count(1)和count(主键索引字段)其实都是执行的count(),而且会选择索引的FFS扫描方式,count(包含空值的列)这种方式一方面会使用全表扫描
一、前言 前几天在Python白银交流群【上海新年人】问了一个Pandas数据处理的问题,一起来看看吧。 大佬们,如何把某一列中包含某个值的所在行给删除?比方说把包含电力这两个字的行给删除。...这里【FANG.J】指出:数据不多的话,可以在excel里直接ctrl f,查找“电力”查找全部,然后ctrl a选中所有,右键删除行。...二、实现过程 这里【莫生气】给了一个思路和代码: # 删除Column1中包含'cherry'的行 df = df[~df['Column1'].str.contains('电力')] 经过点拨,顺利地解决了粉丝的问题...后来粉丝增加了难度,问题如下:但如果我同时要想删除包含电力与电梯,这两个关键的,又该怎么办呢? 这里【莫生气】和【FANG.J】继续给出了答案,可以看看上面的这个写法,中间加个&符号即可。...这篇文章主要盘点了一个Pandas数据处理的问题,文中针对该问题,给出了具体的解析和代码实现,帮助粉丝顺利解决了问题。
默认情况下,dropna()将删除包含空值的所有行: df.dropna() 0 1 2 1 2.0 3.0 5 或者,你可以沿不同的轴删除 NA 值; axis = 1删除包含空值的所有列: df.dropna...(axis='columns') 2 0 2 1 5 2 6 但这也会丢掉一些好的数据; 你可能更愿意删除全部为 NA 值或大多数为 NA 值的行或列。...这可以通过how或thresh参数来指定,这些参数能够精确控制允许通过的空值数量。 默认值是how ='any',这样任何包含空值的行或列(取决于axis关键字)都将被删除。...你也可以指定how ='all',它只会丢弃全部为空值的行/列: df[3] = np.nan df 0 1 2 3 0 1.0 NaN 2 NaN 1 2.0 3.0 5 NaN 2 NaN 4.0...参数允许你为要保留的行/列指定最小数量的非空值: df.dropna(axis='rows', thresh=3) 0 1 2 3 1 2.0 3.0 5 NaN 这里删除了第一行和最后一行,因为它们只包含两个非空值
0为按行删除,1为按列删除 how: 默认 ‘any’。...‘any’指带缺失值的所有行/列;’all’指清除一整行/列都是缺失值的行/列 thresh: int,保留含有int个非nan值的行 subset: 删除特定列中包含缺失值的行或列 inplace...=np.nan print(df) 结果: df=df.dropna()#删除所有包含NaN的行,相当于参数全部默认 #df=df.dropna(axis=0,how=‘any’,thresh...=None,subset=None,inplace=False) print(df) 结果: df=df.dropna(axis=1)#删除所有包含NaN的列 print(df) 结果...df=df.dropna(subset=[0, 2]) #删除列索引0,2中包含nan的行,字符串要加引号 print(df) 结果: 写了这么久代码,现在才想起来整理,如有错误欢迎大家指正
Data Analysis) 序列(Series) 数据帧(DataFrame) 重索引 删除条目 索引,选择和过滤 算术和数据对齐 函数应用和映射 排序和排名 带有重复值的轴索引 汇总和计算描述性统计量...Series) Series是一维数组对象,包含数据数组和相关的数据标签数组。...是表格数据结构,包含列的有序集合。...每列可以是不同的类型。 DataFrame同时具有行索引和列索引,类似于Series的字典。行和列操作大致是对称实现的。 索引DataFrame时返回的列是底层数据的视图,而不是副本。...1.339386 f -1.072969 g 0.865408 dtype: float64 ''' 如果索引对不相同,则将DataFrame对象相加,会产生行和列的索引对的并集,使不重叠的索引为
] 取第四行 t.iloc[:,2] 取第三列 t.iloc[:,[2,1]] 取第3列和第2列 t.iloc[[0,2],[2,1]] 取第1行和第3行对应的第3列和第2列 t.iloc[1:,:2]...缺值处理 pd.isnull(t) 返回的数组中NaN为True,否则为False pd.notnull(t) 返回的数组中NaN为False,否则为True t.dropna(axis=0) 删除包含...NaN的行 t.dropna(axis=0, how='all', inplace=True) how的值为all时,某行全为NaN时才删除,为any时存在NaN则删除整行 inplace为True时,...', how='inner')内连接(默认) 交集 df1.merge(df2, on='a')方法会将df1中a列的值和df2中a列的值进行比较,然后将相等的值对应的整行进行合并,而且返回的结果中只包含具有可以合并的行...df1.merge(df2, on='a', how='outer') 外连接,a列包含的数据为df1和df2中a列元素的并集,每行元素分别对应,有则是原数据(一般a列的元素都有,因为操作列为a),没有则是
我们在使用drop函数删除指定值的行后,原来的索引还是保留的!这可能会在后续的处理中,出现一些莫名其妙的错误。因此如果可以,最好drop完重置一下索引(个人看法)。 ...6 G 20.0 9.0 NaN 7 H 28.0 4.0 12.0 现在假设我们使用 dropna函数从数据帧中删除任何列中缺少值的所有行...14.0 9.0 6.0 4 E 14.0 12.0 6.0 7 H 28.0 4.0 12.0 可以看到,索引仍包含每行的原始索引值...14.0 9.0 6.0 3 E 14.0 12.0 6.0 4 H 28.0 4.0 12.0 这时候,已删除具有缺失值的每一行...当然,在任何时候你都可以使用重置索引: df.reset_index(drop=True) 注意,drop=True如果不写,那原始的索引列还会在,从而多出了新索引一列。
和fillna,dataframe和series都有,在这主要讲datafame的 对于option1: 使用DataFrame.dropna(axis=0, how='any', thresh=None..., subset=None, inplace=False) 参数说明: axis: axis=0: 删除包含缺失值的行 axis=1: 删除包含缺失值的列 how: 与axis配合使用 how=‘...any’ :只要有缺失值出现,就删除该行货列 how=‘all’: 所有的值都缺失,才删除行或列 thresh: axis中至少有thresh个非缺失值,否则删除 比如 axis=0,thresh=10...(labels=None, axis=0, index=None, columns=None, level=None, inplace=False, errors='raise') labels: 要删除行或列的列表...1 2 NaN 1.0 NaN 5 3 NaN 3.0 NaN 4 房价分析: 在此问题中,只有bedroom一列有缺失值,按照此三种方法处理代码为: # option 1 将含有缺失值的行去掉
,还是按照列进行删除,如果设置为0,那么则删除行,如果为1,则删除列。...index:index是按照行删除时传入的参数,需要传入的是一个列表,包含待删除行的索引编号。 columns:columns是按照列删除时的参数,同样传入的是一个列表,包含需要删除列的名称。...axis参数测试,我们使用axis=0.删除行标为【1,2,3】的行。...也就是删除行。...也就是删除列。
在真实世界中的数据,难免会有缺失值的情况出现,可能是收集资料时没有收集到对应的信息,也可能是整理的时候误删除导致。对于包含缺失值的数据,有两大类处理思路 1....删除包含缺失值的行和列,这样会导致特征和样本的减少,在样本和特征的个数很多,且包含缺失值的样本和特征较少的情况下,这种简单粗暴的操作还可以接受 2....单变量填充 这种方式只利用某一个特征的值来进行填充,比如特征A中包含了缺失值,此时可以将该缺失值填充为一个固定的常数,也可以利用所有特征A的非缺失值,来统计出均值,中位数等,填充对应的缺失值,由于在填充时...array([[1. , 2. , 4. ], [3. , 4. , 3. ], [5.5, 6. , 5. ], [8. , 8. , 7. ]]) 对于第一列第三行的...nan,首先计算该样本距离最近的两个样本,分别为第二行和第四行的样本,然后取3和8的均值,即5.5进行填充;接下来填充第一行第三列的难,计算最近的两个样本,分别是第2行和第3行,所以用3和5的均值,4进行填充
处理缺失值的方法3.1 删除缺失值删除缺失值是最直接的方法,可以通过以下两种方式实现:dropna():删除包含缺失值的行或列。- `axis=0`:删除包含缺失值的行(默认)。...- `axis=1`:删除包含缺失值的列。- `how='any'`:只要有一个缺失值就删除(默认)。- `how='all'`:只有当所有值都是缺失值时才删除。...代码案例# 删除包含缺失值的行df_drop_rows = df.dropna()print(df_drop_rows)# 删除包含缺失值的列df_drop_cols = df.dropna(axis=...总结本文介绍了Pandas中处理缺失值的基本方法,包括检测缺失值、删除缺失值、填充缺失值和插值法填充缺失值。同时,我们还讨论了在处理缺失值时可能遇到的一些常见问题及其解决方案。...如果你有任何问题或建议,欢迎留言交流。
在进行数据分析和建模过程中,大量时间花费在数据准备上:加载、清洗、转换和重新排列,这样的工作占用了分析师80%以上的时间。本章将讨论用于缺失值、重复值、字符串操作和其他数据转换的工具。...]等价 -----结果----- 0 1.0 2 3.5 4 7.0 当处理DataFrame对象的时候,可能会复杂一点,可能想要删除全部为NA的列或者含有NA的行或列,dropna默认情况下会删除包含缺失值的行...的行;传入axis=1,可以删除均为NA的列。...6 0.689484 0.610255 0.648971 总结: (1)处理缺失值常用dropna()方法,默认删除含有缺失值的行 (2)传入how="all"可以删除全部为缺失值的行 (3)传入...axis=1可以删除列 (4)传入thresh可以保留一定数量的观察值的行 处理缺失值是数据分析的第一步,下一篇文章将介绍补全缺失值和数据转换的相关内容。
大家好,又见面了,我是你们的朋友全栈君。 pandas的设计目标之一就是使得处理缺失数据的任务更加轻松些。pandas使用NaN作为缺失数据的标记。...=0:删除包含缺失值(NaN)的行 #axis=1:删除包含缺失值(NaN)的列 # how=‘any’:要有缺失值(NaN)出现删除 # how=‘all’:所有的值都缺失(NaN)才删除 这两个要配合使用才好...如果是Series,则返回一个仅含非空数据和索引值的Series,默认丢弃含有缺失值的行。...xx.dropna() 对于DataFrame:data.dropna(how = ‘all’) # 传入这个参数后将只丢弃全为缺失值的那些行 data.dropna(axis = 1) # 丢弃有缺失值的列...Sex”]) # 丢弃‘Age’和‘Sex’这两列中有缺失值的行 版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。
领取专属 10元无门槛券
手把手带您无忧上云