http://www.sfu.ca/~abentaie/topo_fcn/topo_fcn.html 本文将 FCN 加入 geometric and topological 先验信息 用于 组织细胞学图像分割 FCN 针对像素级别的分割,没有考虑图像的higher-order 属性例如 边缘平滑性,多物体之间的拓扑信息 Moreover, FCNs tend to produce low-resolution
这是专栏《图像分割应用》的第2篇文章,本专栏主要介绍图像分割在各个领域的应用、难点、技术要求等常见问题。 相比较脑区域分割,医学图像中的心脏分割问题要更复杂,因为心脏是一个不停运作的器官,其形状也会在运动过程中发生变化。本文我们就来看看医学图像分割之心脏分割。 数据库的困难 对基于深度学习的医学图像分割方法而言,数据库的获取是最主要的困难。 与其他数据不足的场景相同,医学图像也可以借助数据扩张实现网络的训练。比如下图所示,通过随机旋转、平移、缩放、裁剪、弹性形变等手段,对原始图像进行变换: ? 3 应用实例 1. 总结 本文简要介绍了医学图像分割应用领域内的心脏分割,包括心室分割和全心脏分割。在进行任务分析和难点解读后,给出了几个应用范例。下期我们一起来看一下医学领域分割的最后一个子方向:肿瘤分割。
个人网站、项目部署、开发环境、游戏服务器、图床、渲染训练等免费搭建教程,多款云服务器20元起。
这是专栏《图像分割应用》的第3篇文章,本专栏主要介绍图像分割在各个领域的应用、难点、技术要求等常见问题。 肿瘤的分割是医学图像分析领域的一个重要内容,相比较前面提到过的脑区域分割和心脏分割,肿瘤分割任务由于个体间形状、纹理等差异大,从而实现更加困难。本文就来分析一下,肿瘤分割任务。 (1) 基于阈值的分割方法 基于阈值的分割方法是图像分割中最简单、高效的方法,也是最基础的方法之一。这种方法通过对图像内设置全局或局部阈值,实现灰度图像的二值化,从而实现前背景分割,即目标区域分割。 Neural Networks Using U-Net for Automatic Brain Tumor Segmentation in Multimodal MRI Volumes》 总结 本文介绍了医学图像分割中的肿瘤分割问题 下期我们对医学图像分割问题做一个总结,之后开启《图像分割应用》专栏 的第二部分。
本专栏的第一个板块医学图像分割中从具体应用出发,介绍了脑分割、心脏分割和肿瘤分割三个问题,本文就总结一下现阶段医学图像分割中该知道的内容。 即使人们寄希望于深度学习算法可以替代或辅助医学专家作出诊断(或标注图像),现有的方法也远无法胜任医学图像分割中存在的复杂情况。除此以外,医学图像的处理还存在隐私与法律问题、缺乏标准化结构等诸多问题。 医学图像分割 2 难点介绍总结 本专栏医学图像分割板块的前三篇文章已经针对不同具体场景给出了对应的难点分析,这里从整个医学图像分割问题出发,总结一下这些难点。 (3) 数据标准问题 医学图像数据的标准化是医学图像分割问题中的一个难点。医学诊断往往需要算法结合不同的数据库来作出判断,但是由于获取图像的传感器等方面的差异,这些数据库很难在一个标准下进行结合。 》专栏的第一板块:医学图像分割,并给出了可供参考的方法和未来的研究方向。
因此,为了辅助诊断,减小误诊的概率,现阶段的医学图像分析中经常会借助深度学习的方法。 医学图像分割主要处理的是医学领域所涉及到的各种图像的分割问题,比如常见的核磁共振(MRI)扫描图像。 其主要任务是,从这些医学图像中分割出兴趣区域,比如特定器官部位、兴趣目标(如肿瘤)等。 与日常生活中常见场景的分割任务不同,医学图像(如MRI图像)由于图像获取设备的影响,会出现对比度低、信噪比低、光强低等问题;且器官本身存在运动和形变(如心脏),个体之间也有差异。 这些因素导致了医学图像分割的难度和其自身的算法设计特点。 ? 大脑区域及形状个体差异示意图 下面我们以脑区域分割为例,讨论一下该任务的难点,并通过一个应用实例来进一步理解医学图像中的脑区域分割问题。 空间信息利用 如前文所述,当亮度值受到诸如噪声、PVE、偏压场效应等MRI误差的影响时,基于亮度的图像分割算法非常容易出错。因此,引入并利用待分割图像的空间信息就非常重要。
UNet++的目标是通过在编码器和解码器之间加入Dense block和卷积层来提高分割精度。 分割的准确性对于医学图像至关重要,因为边缘分割错误会导致不可靠的结果,从而被拒绝用于临床中。 为医学成像设计的算法必须在数据样本较少的情况下实现高性能和准确性。获取这些样本图像来训练模型可能是一个消耗资源的过程,因为需要由专业人员审查的高质量、未压缩和精确注释的图像。 对于accurate模式,所有分割分支的输出进行平均。 对于fast模式,最终的分割图从分割分支之一选择。 Zhou等人进行了实验,以确定在不同剪枝水平下的最佳分割性能。 该数据集包含101幅视网膜图像,以及用于检测青光眼的光学disc和光学cup的mask标注。青光眼是世界上致盲的主要原因之一。50张图片用于训练,51张用于验证。 从定性测试的结果来看,UNet++成功地对第一张图像进行了正确的分割,而U-Net做得并不好。也由于UNet++的复杂性,训练时间是U-Net的两倍。必须根据它们的数据集评估每种方法。
今天将分享使用快速行进算法(FastMarching)对医学图像分割案例。 在实际中,FastMarching算法可以看作是由速度图像控制的高级区域增长分割方法。该算法具体推导请参考原文连接。 2、使用SimpleITK函数来实现FastMarching分割算法 用FastMarching算法分割有5个步骤:(1)、首先使用各向异性扩散方法对输入图像进行平滑处理;(2)、其次对平滑后的图像进行梯度计算 ,生成边缘图像,在梯度计算过程中可调节高斯sigma参数,来控制水平集减速到接近边缘;(3)、然后使用逻辑回归(Sigmoid)函数对边缘图像进行线性变换,保证边界接区域近零,平坦区域接近1,回归可调参数有 在MRI脑部图像上进行脑室、灰质和白质的分割测试,如图所示依次是MRI原始图像,左脑室分割结果,右脑室分割结果,白质分割结果,灰质分割结果。
,nnUNet及其各种魔改版本几乎霸占了各大比赛的leaderboard,但大多医学图像分割任务一直因为标注数量太少而饱受诟病。 如何缓解标注图像数量太少,未标注数量太多和有效利用未标注的原始数据等问题,已然成为了医学图像分割发展的主要矛盾。 Adversarial Networks、Uncertainty Aware Mean Teacher、Interpolation Consistency Training 等公开半监督算法搭建了一个简单的半监督医学图像分割的 我们在这个repo中总结了最新的半监督医学图像分割算法,及其代码,方便大家追踪和快速尝试。此外,该项目也会持续更新,及时的将最新的算法添加在该列表中。 2. 常用半监督算法实现 ? models和测试结果,努力将这个项目搭建成医学图像半监督分割的benchmark,为更多的研究者通过方便,也希望大家能去尝试并指出存在的问题、给予我们反馈、和提供宝贵的意见和建议。
Jaccard Index 的含义和 Dice Index 一样,用于计算两个样本的相似度或者重叠度:
计算机视觉领域有三大问题:图像分类、目标检测以及图像分割。前两类问题及应用在公众号之前的文章里都有介绍,那么今天我们就来介绍剩下的图像分割问题,并以医学图像分割为例介绍它在现实中的应用。 但我们现在讨论的自然图像语义分割和医学图像分割,其实都属于图像语义分割范畴。 医学图像分割的主要目的还是对图像中具有特殊语义信息(如肿瘤、器官、血管等)赋予标签,但医学图像分割的类别个数一般没有自然图像语义分割那么多。 如VOC2012包含20个类别和一个背景类别,但医学图像分割很多都是二分类问题。 脑部图像 医学图像属于图像的子类,所以针对图像的方法,应用到医学图像中是没有问题的,但我们通常说的图像特指自然图像(RGB图像),而医学图像包含的图像种类(格式,例如CT、MRI等等)范围更加广泛,两者又有一定的区别
作为前置依赖,本篇阅读笔记首先介绍了 Transformer Architecture 和在医学图像分割上的应用;其次,分析了论文中提出的 UTNet 架构(主干 U-Net,混合 Transformer 这里问题就出来了,对于医学图像分割任务目标位置敏感的特殊性,一些欠分割或者过分割的区域都在目标周围,往往需要高分辨率特征。 此外,有些实验论证,在 ImageNet 上进行了预训练,Transformer 要比 ResNet 差,Transformer 真的能适应医学图像这种小数据集分割任务吗? 为了解决上面的问题,文章中提出的 U-Net 混合 Transformer 网络:UTNet,它整合了卷积和自注意力策略用于医学图像分割任务。 2 浅析 Transformer 架构 上面我们对 Transformer 在医学图像分割上的应用和局限做了概述,这里我们简单分析下 Transformer 架构,对这部分很了解的读者可以跳过。
Li-SegmentationOfMedicalUltrasoundImagesUsingConvolutionalNeuralNetworksWithNoisyActivatingFunctions-report.pdf 这是 Stanford University 一个学生做的 project 使用 U-Net 做超声图像分割 Noisy Activating Functions激活函数参考文献: Noisy Activation Functions https://arxiv.org/abs/1603.00391v3 超声图像还是比较难分割的 人也很容易分割错误 ? 这里采用 U-Net 网络结构: ? 直接将 U-Net 网络 用于超声图像分割,效果不是很好 In order to improve the performance of it, we explore the possibility
目前深度学习在图像上有了突破性的发展,但是传统的图像处理算法在特定的场景下还是有很多应用的,今天我将分享在CT图像上来进行肺分割,并通过Opencv来实现。 ? 1、用大津阈值法进行分割 由于CT图像特点,采用大津阈值法就可以实现将肺组织和人体骨骼脂肪分离开。 2、去除背景目标 从上面的分割结果可以看到,背景跟肺组织不是连通的区域,因此我们可以通过连通域分析去除与背景相连通的区域。
在前面的文章中,已经分享过肺部气管分割案例,当时是采用区域生长方法来实现气管分割的,今天我将分享另外一种方法来对肺部气管分割并生成三维模型的案例。 一、VESSEL12挑战赛简介 ? 该挑战赛的任务是从肺部CT图像中采用自动或半自动方法来分割出肺部血管区域图像。但是该挑战赛提供的数据只有原始CT图像和肺部区域Mask图像。详情内容可以访问原文链接。 但是在这里,我们再回顾一下之前的内容医学图像处理案例(一)——基于CT图像的肺分割,肺分割主要步骤有六步:(1)、观察图像发现有噪声,采用中值滤波器滤除噪声,(2)、采用大津阈值法进行分割,(3)、去除背景目标 从上面原始CT图像上可以看到噪声比较大,对后面肺分割会有影响,这里采用中值滤波的方法来预处理,可以看到噪声基本被抑制了,但是血管信息也被抑制了,不过这没关系,这一步只是为了得到肺部整个区域。 ? 三、VESSEL12的肺部气管分割提取 之前文章也说过可以采用Hessian矩阵来增强血管区域,医学图像处理案例(六)——生成血管三维模型所以这里利用Hessian矩阵是多维变量函数的二阶偏导数矩阵,根据其特征值的属性来检测管状类的结构
在前面的文章中,已经分享过肺分割案例和脑血管分割案例。有朋友向我提出是否可以对肺部血管进行分割,并让我分享案例教程。那么今天我将分享人体肺部血管分割并生成三维模型的案例。 该挑战赛的任务是从肺部CT图像中采用自动或半自动方法来分割出肺部血管区域图像。但是该挑战赛提供的数据只有原始CT图像和肺部区域Mask图像。详情内容可以访问原文链接。 但是在这里,我们再回顾一下之前的内容医学图像处理案例(一)——基于CT图像的肺分割,肺分割主要步骤有六步:(1)、观察图像发现有噪声,采用中值滤波器滤除噪声,(2)、采用大津阈值法进行分割,(3)、去除背景目标 二、VESSEL12的肺部血管增强处理 之前文章也说过可以采用Hessian矩阵来增强血管区域,医学图像处理案例(六)——生成血管三维模型所以这里利用Hessian矩阵是多维变量函数的二阶偏导数矩阵,根据其特征值的属性来检测管状类的结构 三、VESSEL12的肺部血管分割提取 从上图可以看到增强后的血管区域是很明亮的,这一步为了提取血管区域图像,采用阈值分割方法来对增强后的图像进行二值分割处理,结果如下图所示,可以看到只剩下特征明显的血管区域图像了
在之前的文章中我分享了Tensorflow的基本知识内容,接下来我将会分享如何利用Tensorflow将深度学习应用到医学图像上,今天我会分享深度学习在医学图像分割的实际案例。 1、Unet模型 在医学图像处理领域,有一种应用很广泛的全卷积神经网络模型结构——Unet,网络模型结构如下。 在测试图像上,我用训练好的模型来进行分割,整个测试集上的平均精度为90.75%。为了更主观的查看模型的效果,我给出了2组图像(原始细胞图像和原始细胞分割图像)并用模型分割后的对比效果图。 测试的原始细胞图像A ? 测试的原始细胞分割图像A ? 模型的分割图像A ? 测试的原始细胞图像B ? 测试的原始细胞分割图像B ? 模型的分割图像B ? 从上面可以看到整体分割效果还是不错的,感兴趣的就自己动手试一试吧。如果碰到任何问题,随时留言,我会尽量去回答的。
在图像分割任务特别是医学图像分割中,U-Net[1]无疑是最成功的方法之一,该方法在2015年MICCAI会议上提出,目前已达到四千多次引用。 3D U-Net[3]是U-Net的一个简单扩展,应用于三维图像分割,结构如下图所示。 [6] 中将Res-UNet用于视网膜图像的分割,其结构如下图所示,其中灰色实线表示各个模块中添加的残差连接。 ? 从左至右分别是一幅图像和随着训练次数的增加该图像中得到的注意力权重。可见得到的注意力权重倾向于在目标器官区域取得大的值,在背景区域取得较小的值,有助于提高图像分割的精度。 ? 希望本文对做图像分割的同学有所启发。 九 参考文章 [1] Ronneberger, Olaf, Philipp Fischer, and Thomas Brox.
南京理工大学,南京大学 论文名称:Exploring Large Context for Cerebral Aneurysm Segmentation 原文作者:Jun Ma 内容提要 从3D CT中自动分割动脉瘤对于脑动脉瘤疾病的诊断 本文简要介绍MICCAI 2020 CADA挑战赛中动脉瘤分割方法的主要技术细节。本文主要贡献在于配置了一个大patch的3D UNet,可以获得背景信息。
论文复现之医学图像应用:视网膜血管分割 0.导语 今日研究为继续上次论文中的一个内容:U-Net网络,于是找了一篇经典论文,并学习论文及代码解读。 中文翻译为:用于生物医学图像分割的U-Net卷积网络。 1.1 摘要 之前,在训练一个深度网络需要大量已标注的训练样本。在这篇论文中,提出了一种网络和训练策略。 然而,在许多视觉任务中,尤其是在生物医学图像处理中,期望的输出应该包括定位,即:应该将类别标签分配给每个像素。 此外,在生物医学任务中,千量级的训练图像通常难以训练。 没有任何完全连接的层,分割图仅包含像素,对于该像素,输入图像中的完整上下文是可用的。 该策略允许通过重叠拼贴策略对任意大的图像进行无缝分割。 这使得网络能够学习这种变形的不变性,而不需要在注释图像语料库中看到这些变换。 这在生物医学分割中特别重要,因为变形曾经是组织中最常见的变异,并且可以有效地模拟真实变形。
扫码关注腾讯云开发者
领取腾讯云代金券