展开

关键词

VGG16迁移学习,实现医学图像识别分类工程项目

此为2017-2018年度工程实践项目,主要目的是能够识别图像类别,尤其是医学类,然后在医学类中再进行更为细致的类别识别,以达到医学影像这一垂直领域的应用目的。 VGG16模型——vgg16_weights_tf_dim_ordering_tf_kernels.h5 main:主文件 - MedicalLargeClassification.py——图像识别 数据源 ImageNet开源数据集中的VOC2012一部分,进行类别合并,筛选出人物、动物、室内、交通四大类 从国外开源医疗图像网站www.openi.org上爬取图片,进行修剪,最终得到医学类图像 其中医学类又细分为了胸部、头部、四肢三类 数据规模:训练集1700张,验证集450张,测试集35张 模型 模型借鉴了迁移学习的思想,利用基于ImageNet数据集训练好的 GUI 利用python的tkinter搭建交互界面 将大类识别和医学小类识别串联起来,形成应用。 ? 测试 测试样本:testCase ? 测试截图:红线框标注的为分类错误 ?

84010

【python 图像识别图像识别从菜鸟

1.6K41
  • 广告
    关闭

    腾讯云+社区系列公开课上线啦!

    Vite学习指南,基于腾讯云Webify部署项目。

  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    图像识别

    我们现在正在采取下一步,发布在最新型号Inception-v3上运行图像识别的代码。 Inception-v3 使用2012年的数据对ImageNet大型视觉识别挑战进行了培训。

    3K80

    Airtest图像识别

    Airtest是一款网易出品的基于图像识别面向手游UI测试的工具,也支持原生Android App基于元素识别的UI自动化测试。 图示为AirtestIDE中脚本运行范例 本文重点是针对Airtest中的图像识别进行代码走读,加深对图像识别原理的理解(公众号贴出的代码显示不全仅供参考,详细代码可以在github查看)。 这里可以看到,Airtest也没有自研一套很牛的图像识别算法,直接用的OpenCV的模板匹配方法。 四、接着看另外一个方法 aircv.find_sift 定义在sift.py里面: ? ? FlannBasedMatcher(index_params,search_params).knnMatch(des1,des2,k=2) 哪个优先匹配上了,就直接返回结果,可以看到用的都是OpenCV的图像识别算法 六、总结 1、图像识别,对不能用ui控件定位的地方的,使用图像识别来定位,对一些自定义控件、H5、小程序、游戏,都可以支持; 2、支持多个终端,使用图像识别的话可以一套代码兼容android和ios哦,

    4.7K20

    医学图像处理教程(三)——医学图像增强算法

    今天将给大家分享医学图像常见图像增强算法。

    1.3K50

    医学图像处理

    0、引言 医学图像处理的对象是各种不同成像机理的医学影像,临床广泛使用的医学成像种类主要有X-射线成像 (X-CT)、核磁共振成像(MRI)、核医学成像(NMI)和超声波成像(UI)四类。 世界各地的医学图像处理机构已经迅速进入该领域,并将CNN和其它深度学习方法应用于各种医学图像分析。 在医学成像中,疾病的准确诊断和评估取决于医学图像的采集和图像解释。 图12 多模态医学图像融合的例子。 图像分析技术在医学上的应用 [J] . 包头医学院学报, 2005, 21 (3) : 311~ 314 [2]周贤善. 医学图像处理技术综述[J]. 图像分析技术在医学上的应用 [J] . 包头医学院学报, 2005, 21 (3) : 311~ 314

    2K42

    医学图像分割

    Topology Aware Fully Convolutional Networks For Histology Gland Segmentation

    48920

    医学图像了解

    医学图像 医学图像是反映解剖区域内部结构或内部功能的图像,它是由一组图像元素——像素(2D)或立体像素(3D)组成的。医学图像是由采样或重建产生的离散性图像表征,它能将数值映射到不同的空间位置上。 像素的数量是用来描述某一成像设备下的医学成像的,同时也是描述解剖及其功能细节的一种表达方式。 ,分别为DICOM(医学数字成像和通讯)、NIFTI(神经影像信息技术)、PAR/REC(Philips磁共振扫描格式)、ANALYZE(Mayo医学成像)、NRRD(近原始栅格数据)和MNIC 现代神经影像学技术 它定义了质量能满足临床需要的可用于数据交换的医学图像格式 PET是正电子发射断层显像(Positron Emission Tomography)的缩写,是一种先进的核医学影像技术;CT是计算机断层摄影术 Dicom 它定义了质量能满足临床需要的可用于数据交换的医学图像格式,可用于处理、存储、打印和传输医学影像信息。

    68931

    图像识别——MNIST

    本文使用NEURAL程序来介绍一下在SAS里如何实现图像识别。例子所用的数据集是MNIST数据集,从http://yann.lecun.com/exdb/mnist/可以获取。

    79740

    医学图像处理教程(四)——医学图像去噪算法

    今天将给大家分享医学图像常见三种图像去噪算法。

    2K20

    医学图像处理案例(二十)——医学图像处理案例代码详解

    在前面分享的医学图像处理案例中,给出了很多具体案例,但有些读者还是渴望可以深入分享案例代码详解。那么今天我将从骨骼分割,气管分割,肺组织分割,血管分割这四个具体案例来详细讲解如何来实现。

    1.7K43

    图像识别之GridMask

    GridMask: https://arxiv.org/abs/2001.04086

    76910

    图像识别之mixupcutmix

    本人kaggle分享链接:https://www.kaggle.com/c/bengaliai-cv19/discussion/126504

    99210

    医学图像处理案例(十三)——快速行进算法分割医学图像

    今天将分享使用快速行进算法(FastMarching)对医学图像分割案例。

    1.6K51

    算法集锦(14)|图像识别| 图像识别算法的罗夏测试

    随着对基于深度学习的图像识别算法的大量研究与应用,我们倾向于将各种各样的算法组合起来快速进行图片识别和标注。

    59020

    医学图像处理教程(五)——医学图像边缘检测算法

    今天将给大家分享医学图像常见两种图像边缘检测算法。

    1.2K30

    图像识别——突破与应用

    最近,图像识别领域发布了白皮书,简单翻译一下做个总结。 ---- [2] 图像识别 图像识别的目标是识别图像中的对象和人,并理解上下文。图像识别属于机器知觉,机器知觉是机器学习(ML)和人工智能(AI)的一部分。 这是图像识别史上的一个转折点,也是这个领域前途光明的开始。这个成就将焦点从传统的图像识别方法转移到了使用深度神经网络的新方法。 图像识别与虚拟和增强现实的进步相结合,将继续为游戏产业带来革命性的变化。 4.5 对物体和场景建模 图像识别最重要的应用之一将是健康行业的医疗和生物医学图像分析。 配备有先进图像识别能力的智能移动机器人具有许多商业(例如服务业)和个人用途。最先进的图像识别最新的应用是协助自动驾驶汽车和汽车驾驶员。

    3.9K113

    图像识别之augmix

    augmix: https://github.com/google-research/augmix

    54810

    PhotoSynth:图像识别建模技术

    PhotoSynth是微软公司从华盛顿大学购买来的一项技术,主要作用是通过平面照片自动建立空间模型,目前已经接近即将发布的前夕。 举例来说,游客来到上海,外滩...

    606100

    H5 图像识别

    识别对比 ---- 1、百度识别 发现百度的图片搜索识别率不是特别,下面为测试图片跟测试后的结果: 测试图片: 下面为测试后的结果: 2、采用 tesseract.js 后结果 H5 图像识别

    16330

    扫码关注腾讯云开发者

    领取腾讯云代金券